Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [338,8,Mod(1,338)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(338, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("338.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 338.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 2) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 338.8.a.d | 1 | |
13.b | even | 2 | 1 | 2.8.a.a | ✓ | 1 | |
13.d | odd | 4 | 2 | 338.8.b.d | 2 | ||
39.d | odd | 2 | 1 | 18.8.a.b | 1 | ||
52.b | odd | 2 | 1 | 16.8.a.b | 1 | ||
65.d | even | 2 | 1 | 50.8.a.g | 1 | ||
65.h | odd | 4 | 2 | 50.8.b.c | 2 | ||
91.b | odd | 2 | 1 | 98.8.a.a | 1 | ||
91.r | even | 6 | 2 | 98.8.c.d | 2 | ||
91.s | odd | 6 | 2 | 98.8.c.e | 2 | ||
104.e | even | 2 | 1 | 64.8.a.c | 1 | ||
104.h | odd | 2 | 1 | 64.8.a.e | 1 | ||
117.n | odd | 6 | 2 | 162.8.c.a | 2 | ||
117.t | even | 6 | 2 | 162.8.c.l | 2 | ||
143.d | odd | 2 | 1 | 242.8.a.e | 1 | ||
156.h | even | 2 | 1 | 144.8.a.i | 1 | ||
195.e | odd | 2 | 1 | 450.8.a.c | 1 | ||
195.s | even | 4 | 2 | 450.8.c.g | 2 | ||
208.o | odd | 4 | 2 | 256.8.b.f | 2 | ||
208.p | even | 4 | 2 | 256.8.b.b | 2 | ||
221.b | even | 2 | 1 | 578.8.a.b | 1 | ||
260.g | odd | 2 | 1 | 400.8.a.l | 1 | ||
260.p | even | 4 | 2 | 400.8.c.j | 2 | ||
312.b | odd | 2 | 1 | 576.8.a.g | 1 | ||
312.h | even | 2 | 1 | 576.8.a.f | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
2.8.a.a | ✓ | 1 | 13.b | even | 2 | 1 | |
16.8.a.b | 1 | 52.b | odd | 2 | 1 | ||
18.8.a.b | 1 | 39.d | odd | 2 | 1 | ||
50.8.a.g | 1 | 65.d | even | 2 | 1 | ||
50.8.b.c | 2 | 65.h | odd | 4 | 2 | ||
64.8.a.c | 1 | 104.e | even | 2 | 1 | ||
64.8.a.e | 1 | 104.h | odd | 2 | 1 | ||
98.8.a.a | 1 | 91.b | odd | 2 | 1 | ||
98.8.c.d | 2 | 91.r | even | 6 | 2 | ||
98.8.c.e | 2 | 91.s | odd | 6 | 2 | ||
144.8.a.i | 1 | 156.h | even | 2 | 1 | ||
162.8.c.a | 2 | 117.n | odd | 6 | 2 | ||
162.8.c.l | 2 | 117.t | even | 6 | 2 | ||
242.8.a.e | 1 | 143.d | odd | 2 | 1 | ||
256.8.b.b | 2 | 208.p | even | 4 | 2 | ||
256.8.b.f | 2 | 208.o | odd | 4 | 2 | ||
338.8.a.d | 1 | 1.a | even | 1 | 1 | trivial | |
338.8.b.d | 2 | 13.d | odd | 4 | 2 | ||
400.8.a.l | 1 | 260.g | odd | 2 | 1 | ||
400.8.c.j | 2 | 260.p | even | 4 | 2 | ||
450.8.a.c | 1 | 195.e | odd | 2 | 1 | ||
450.8.c.g | 2 | 195.s | even | 4 | 2 | ||
576.8.a.f | 1 | 312.h | even | 2 | 1 | ||
576.8.a.g | 1 | 312.b | odd | 2 | 1 | ||
578.8.a.b | 1 | 221.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|