Properties

Label 338.8.a.d
Level 338338
Weight 88
Character orbit 338.a
Self dual yes
Analytic conductor 105.586105.586
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,8,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 338=2132 338 = 2 \cdot 13^{2}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 105.586138614105.586138614
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 2)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+8q2+12q3+64q4+210q5+96q61016q7+512q82043q9+1680q101092q11+768q128128q14+2520q15+4096q16+14706q1716344q18++2230956q99+O(q100) q + 8 q^{2} + 12 q^{3} + 64 q^{4} + 210 q^{5} + 96 q^{6} - 1016 q^{7} + 512 q^{8} - 2043 q^{9} + 1680 q^{10} - 1092 q^{11} + 768 q^{12} - 8128 q^{14} + 2520 q^{15} + 4096 q^{16} + 14706 q^{17} - 16344 q^{18}+ \cdots + 2230956 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
8.00000 12.0000 64.0000 210.000 96.0000 −1016.00 512.000 −2043.00 1680.00
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.8.a.d 1
13.b even 2 1 2.8.a.a 1
13.d odd 4 2 338.8.b.d 2
39.d odd 2 1 18.8.a.b 1
52.b odd 2 1 16.8.a.b 1
65.d even 2 1 50.8.a.g 1
65.h odd 4 2 50.8.b.c 2
91.b odd 2 1 98.8.a.a 1
91.r even 6 2 98.8.c.d 2
91.s odd 6 2 98.8.c.e 2
104.e even 2 1 64.8.a.c 1
104.h odd 2 1 64.8.a.e 1
117.n odd 6 2 162.8.c.a 2
117.t even 6 2 162.8.c.l 2
143.d odd 2 1 242.8.a.e 1
156.h even 2 1 144.8.a.i 1
195.e odd 2 1 450.8.a.c 1
195.s even 4 2 450.8.c.g 2
208.o odd 4 2 256.8.b.f 2
208.p even 4 2 256.8.b.b 2
221.b even 2 1 578.8.a.b 1
260.g odd 2 1 400.8.a.l 1
260.p even 4 2 400.8.c.j 2
312.b odd 2 1 576.8.a.g 1
312.h even 2 1 576.8.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2.8.a.a 1 13.b even 2 1
16.8.a.b 1 52.b odd 2 1
18.8.a.b 1 39.d odd 2 1
50.8.a.g 1 65.d even 2 1
50.8.b.c 2 65.h odd 4 2
64.8.a.c 1 104.e even 2 1
64.8.a.e 1 104.h odd 2 1
98.8.a.a 1 91.b odd 2 1
98.8.c.d 2 91.r even 6 2
98.8.c.e 2 91.s odd 6 2
144.8.a.i 1 156.h even 2 1
162.8.c.a 2 117.n odd 6 2
162.8.c.l 2 117.t even 6 2
242.8.a.e 1 143.d odd 2 1
256.8.b.b 2 208.p even 4 2
256.8.b.f 2 208.o odd 4 2
338.8.a.d 1 1.a even 1 1 trivial
338.8.b.d 2 13.d odd 4 2
400.8.a.l 1 260.g odd 2 1
400.8.c.j 2 260.p even 4 2
450.8.a.c 1 195.e odd 2 1
450.8.c.g 2 195.s even 4 2
576.8.a.f 1 312.h even 2 1
576.8.a.g 1 312.b odd 2 1
578.8.a.b 1 221.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S8new(Γ0(338))S_{8}^{\mathrm{new}}(\Gamma_0(338)):

T312 T_{3} - 12 Copy content Toggle raw display
T5210 T_{5} - 210 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T - 8 Copy content Toggle raw display
33 T12 T - 12 Copy content Toggle raw display
55 T210 T - 210 Copy content Toggle raw display
77 T+1016 T + 1016 Copy content Toggle raw display
1111 T+1092 T + 1092 Copy content Toggle raw display
1313 T T Copy content Toggle raw display
1717 T14706 T - 14706 Copy content Toggle raw display
1919 T39940 T - 39940 Copy content Toggle raw display
2323 T68712 T - 68712 Copy content Toggle raw display
2929 T+102570 T + 102570 Copy content Toggle raw display
3131 T+227552 T + 227552 Copy content Toggle raw display
3737 T+160526 T + 160526 Copy content Toggle raw display
4141 T+10842 T + 10842 Copy content Toggle raw display
4343 T+630748 T + 630748 Copy content Toggle raw display
4747 T+472656 T + 472656 Copy content Toggle raw display
5353 T+1494018 T + 1494018 Copy content Toggle raw display
5959 T+2640660 T + 2640660 Copy content Toggle raw display
6161 T827702 T - 827702 Copy content Toggle raw display
6767 T126004 T - 126004 Copy content Toggle raw display
7171 T1414728 T - 1414728 Copy content Toggle raw display
7373 T+980282 T + 980282 Copy content Toggle raw display
7979 T+3566800 T + 3566800 Copy content Toggle raw display
8383 T+5672892 T + 5672892 Copy content Toggle raw display
8989 T11951190 T - 11951190 Copy content Toggle raw display
9797 T+8682146 T + 8682146 Copy content Toggle raw display
show more
show less