Properties

Label 338.8.a.d
Level $338$
Weight $8$
Character orbit 338.a
Self dual yes
Analytic conductor $105.586$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,8,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(105.586138614\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 8 q^{2} + 12 q^{3} + 64 q^{4} + 210 q^{5} + 96 q^{6} - 1016 q^{7} + 512 q^{8} - 2043 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 8 q^{2} + 12 q^{3} + 64 q^{4} + 210 q^{5} + 96 q^{6} - 1016 q^{7} + 512 q^{8} - 2043 q^{9} + 1680 q^{10} - 1092 q^{11} + 768 q^{12} - 8128 q^{14} + 2520 q^{15} + 4096 q^{16} + 14706 q^{17} - 16344 q^{18} + 39940 q^{19} + 13440 q^{20} - 12192 q^{21} - 8736 q^{22} + 68712 q^{23} + 6144 q^{24} - 34025 q^{25} - 50760 q^{27} - 65024 q^{28} - 102570 q^{29} + 20160 q^{30} - 227552 q^{31} + 32768 q^{32} - 13104 q^{33} + 117648 q^{34} - 213360 q^{35} - 130752 q^{36} - 160526 q^{37} + 319520 q^{38} + 107520 q^{40} - 10842 q^{41} - 97536 q^{42} - 630748 q^{43} - 69888 q^{44} - 429030 q^{45} + 549696 q^{46} - 472656 q^{47} + 49152 q^{48} + 208713 q^{49} - 272200 q^{50} + 176472 q^{51} - 1494018 q^{53} - 406080 q^{54} - 229320 q^{55} - 520192 q^{56} + 479280 q^{57} - 820560 q^{58} - 2640660 q^{59} + 161280 q^{60} + 827702 q^{61} - 1820416 q^{62} + 2075688 q^{63} + 262144 q^{64} - 104832 q^{66} + 126004 q^{67} + 941184 q^{68} + 824544 q^{69} - 1706880 q^{70} + 1414728 q^{71} - 1046016 q^{72} - 980282 q^{73} - 1284208 q^{74} - 408300 q^{75} + 2556160 q^{76} + 1109472 q^{77} - 3566800 q^{79} + 860160 q^{80} + 3858921 q^{81} - 86736 q^{82} - 5672892 q^{83} - 780288 q^{84} + 3088260 q^{85} - 5045984 q^{86} - 1230840 q^{87} - 559104 q^{88} + 11951190 q^{89} - 3432240 q^{90} + 4397568 q^{92} - 2730624 q^{93} - 3781248 q^{94} + 8387400 q^{95} + 393216 q^{96} - 8682146 q^{97} + 1669704 q^{98} + 2230956 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
8.00000 12.0000 64.0000 210.000 96.0000 −1016.00 512.000 −2043.00 1680.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.8.a.d 1
13.b even 2 1 2.8.a.a 1
13.d odd 4 2 338.8.b.d 2
39.d odd 2 1 18.8.a.b 1
52.b odd 2 1 16.8.a.b 1
65.d even 2 1 50.8.a.g 1
65.h odd 4 2 50.8.b.c 2
91.b odd 2 1 98.8.a.a 1
91.r even 6 2 98.8.c.d 2
91.s odd 6 2 98.8.c.e 2
104.e even 2 1 64.8.a.c 1
104.h odd 2 1 64.8.a.e 1
117.n odd 6 2 162.8.c.a 2
117.t even 6 2 162.8.c.l 2
143.d odd 2 1 242.8.a.e 1
156.h even 2 1 144.8.a.i 1
195.e odd 2 1 450.8.a.c 1
195.s even 4 2 450.8.c.g 2
208.o odd 4 2 256.8.b.f 2
208.p even 4 2 256.8.b.b 2
221.b even 2 1 578.8.a.b 1
260.g odd 2 1 400.8.a.l 1
260.p even 4 2 400.8.c.j 2
312.b odd 2 1 576.8.a.g 1
312.h even 2 1 576.8.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2.8.a.a 1 13.b even 2 1
16.8.a.b 1 52.b odd 2 1
18.8.a.b 1 39.d odd 2 1
50.8.a.g 1 65.d even 2 1
50.8.b.c 2 65.h odd 4 2
64.8.a.c 1 104.e even 2 1
64.8.a.e 1 104.h odd 2 1
98.8.a.a 1 91.b odd 2 1
98.8.c.d 2 91.r even 6 2
98.8.c.e 2 91.s odd 6 2
144.8.a.i 1 156.h even 2 1
162.8.c.a 2 117.n odd 6 2
162.8.c.l 2 117.t even 6 2
242.8.a.e 1 143.d odd 2 1
256.8.b.b 2 208.p even 4 2
256.8.b.f 2 208.o odd 4 2
338.8.a.d 1 1.a even 1 1 trivial
338.8.b.d 2 13.d odd 4 2
400.8.a.l 1 260.g odd 2 1
400.8.c.j 2 260.p even 4 2
450.8.a.c 1 195.e odd 2 1
450.8.c.g 2 195.s even 4 2
576.8.a.f 1 312.h even 2 1
576.8.a.g 1 312.b odd 2 1
578.8.a.b 1 221.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(338))\):

\( T_{3} - 12 \) Copy content Toggle raw display
\( T_{5} - 210 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 8 \) Copy content Toggle raw display
$3$ \( T - 12 \) Copy content Toggle raw display
$5$ \( T - 210 \) Copy content Toggle raw display
$7$ \( T + 1016 \) Copy content Toggle raw display
$11$ \( T + 1092 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 14706 \) Copy content Toggle raw display
$19$ \( T - 39940 \) Copy content Toggle raw display
$23$ \( T - 68712 \) Copy content Toggle raw display
$29$ \( T + 102570 \) Copy content Toggle raw display
$31$ \( T + 227552 \) Copy content Toggle raw display
$37$ \( T + 160526 \) Copy content Toggle raw display
$41$ \( T + 10842 \) Copy content Toggle raw display
$43$ \( T + 630748 \) Copy content Toggle raw display
$47$ \( T + 472656 \) Copy content Toggle raw display
$53$ \( T + 1494018 \) Copy content Toggle raw display
$59$ \( T + 2640660 \) Copy content Toggle raw display
$61$ \( T - 827702 \) Copy content Toggle raw display
$67$ \( T - 126004 \) Copy content Toggle raw display
$71$ \( T - 1414728 \) Copy content Toggle raw display
$73$ \( T + 980282 \) Copy content Toggle raw display
$79$ \( T + 3566800 \) Copy content Toggle raw display
$83$ \( T + 5672892 \) Copy content Toggle raw display
$89$ \( T - 11951190 \) Copy content Toggle raw display
$97$ \( T + 8682146 \) Copy content Toggle raw display
show more
show less