Properties

Label 338.8.a.d
Level $338$
Weight $8$
Character orbit 338.a
Self dual yes
Analytic conductor $105.586$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,8,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(105.586138614\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 8 q^{2} + 12 q^{3} + 64 q^{4} + 210 q^{5} + 96 q^{6} - 1016 q^{7} + 512 q^{8} - 2043 q^{9} + 1680 q^{10} - 1092 q^{11} + 768 q^{12} - 8128 q^{14} + 2520 q^{15} + 4096 q^{16} + 14706 q^{17} - 16344 q^{18}+ \cdots + 2230956 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
8.00000 12.0000 64.0000 210.000 96.0000 −1016.00 512.000 −2043.00 1680.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.8.a.d 1
13.b even 2 1 2.8.a.a 1
13.d odd 4 2 338.8.b.d 2
39.d odd 2 1 18.8.a.b 1
52.b odd 2 1 16.8.a.b 1
65.d even 2 1 50.8.a.g 1
65.h odd 4 2 50.8.b.c 2
91.b odd 2 1 98.8.a.a 1
91.r even 6 2 98.8.c.d 2
91.s odd 6 2 98.8.c.e 2
104.e even 2 1 64.8.a.c 1
104.h odd 2 1 64.8.a.e 1
117.n odd 6 2 162.8.c.a 2
117.t even 6 2 162.8.c.l 2
143.d odd 2 1 242.8.a.e 1
156.h even 2 1 144.8.a.i 1
195.e odd 2 1 450.8.a.c 1
195.s even 4 2 450.8.c.g 2
208.o odd 4 2 256.8.b.f 2
208.p even 4 2 256.8.b.b 2
221.b even 2 1 578.8.a.b 1
260.g odd 2 1 400.8.a.l 1
260.p even 4 2 400.8.c.j 2
312.b odd 2 1 576.8.a.g 1
312.h even 2 1 576.8.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2.8.a.a 1 13.b even 2 1
16.8.a.b 1 52.b odd 2 1
18.8.a.b 1 39.d odd 2 1
50.8.a.g 1 65.d even 2 1
50.8.b.c 2 65.h odd 4 2
64.8.a.c 1 104.e even 2 1
64.8.a.e 1 104.h odd 2 1
98.8.a.a 1 91.b odd 2 1
98.8.c.d 2 91.r even 6 2
98.8.c.e 2 91.s odd 6 2
144.8.a.i 1 156.h even 2 1
162.8.c.a 2 117.n odd 6 2
162.8.c.l 2 117.t even 6 2
242.8.a.e 1 143.d odd 2 1
256.8.b.b 2 208.p even 4 2
256.8.b.f 2 208.o odd 4 2
338.8.a.d 1 1.a even 1 1 trivial
338.8.b.d 2 13.d odd 4 2
400.8.a.l 1 260.g odd 2 1
400.8.c.j 2 260.p even 4 2
450.8.a.c 1 195.e odd 2 1
450.8.c.g 2 195.s even 4 2
576.8.a.f 1 312.h even 2 1
576.8.a.g 1 312.b odd 2 1
578.8.a.b 1 221.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(338))\):

\( T_{3} - 12 \) Copy content Toggle raw display
\( T_{5} - 210 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 8 \) Copy content Toggle raw display
$3$ \( T - 12 \) Copy content Toggle raw display
$5$ \( T - 210 \) Copy content Toggle raw display
$7$ \( T + 1016 \) Copy content Toggle raw display
$11$ \( T + 1092 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 14706 \) Copy content Toggle raw display
$19$ \( T - 39940 \) Copy content Toggle raw display
$23$ \( T - 68712 \) Copy content Toggle raw display
$29$ \( T + 102570 \) Copy content Toggle raw display
$31$ \( T + 227552 \) Copy content Toggle raw display
$37$ \( T + 160526 \) Copy content Toggle raw display
$41$ \( T + 10842 \) Copy content Toggle raw display
$43$ \( T + 630748 \) Copy content Toggle raw display
$47$ \( T + 472656 \) Copy content Toggle raw display
$53$ \( T + 1494018 \) Copy content Toggle raw display
$59$ \( T + 2640660 \) Copy content Toggle raw display
$61$ \( T - 827702 \) Copy content Toggle raw display
$67$ \( T - 126004 \) Copy content Toggle raw display
$71$ \( T - 1414728 \) Copy content Toggle raw display
$73$ \( T + 980282 \) Copy content Toggle raw display
$79$ \( T + 3566800 \) Copy content Toggle raw display
$83$ \( T + 5672892 \) Copy content Toggle raw display
$89$ \( T - 11951190 \) Copy content Toggle raw display
$97$ \( T + 8682146 \) Copy content Toggle raw display
show more
show less