L(s) = 1 | + (0.903 + 0.428i)2-s + (0.632 + 0.774i)4-s + (0.692 − 0.721i)5-s + (0.239 + 0.970i)8-s + (−0.0804 − 0.996i)9-s + (0.935 − 0.354i)10-s + (−0.278 − 0.960i)13-s + (−0.200 + 0.979i)16-s + (−0.176 + 0.0969i)17-s + (0.354 − 0.935i)18-s + (0.996 + 0.0804i)20-s + (−0.0402 − 0.999i)25-s + (0.160 − 0.987i)26-s + (1.52 + 0.724i)29-s + (−0.600 + 0.799i)32-s + ⋯ |
L(s) = 1 | + (0.903 + 0.428i)2-s + (0.632 + 0.774i)4-s + (0.692 − 0.721i)5-s + (0.239 + 0.970i)8-s + (−0.0804 − 0.996i)9-s + (0.935 − 0.354i)10-s + (−0.278 − 0.960i)13-s + (−0.200 + 0.979i)16-s + (−0.176 + 0.0969i)17-s + (0.354 − 0.935i)18-s + (0.996 + 0.0804i)20-s + (−0.0402 − 0.999i)25-s + (0.160 − 0.987i)26-s + (1.52 + 0.724i)29-s + (−0.600 + 0.799i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.468688157\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.468688157\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.903 - 0.428i)T \) |
| 5 | \( 1 + (-0.692 + 0.721i)T \) |
| 13 | \( 1 + (0.278 + 0.960i)T \) |
good | 3 | \( 1 + (0.0804 + 0.996i)T^{2} \) |
| 7 | \( 1 + (0.845 + 0.534i)T^{2} \) |
| 11 | \( 1 + (0.160 - 0.987i)T^{2} \) |
| 17 | \( 1 + (0.176 - 0.0969i)T + (0.534 - 0.845i)T^{2} \) |
| 19 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + (-1.52 - 0.724i)T + (0.632 + 0.774i)T^{2} \) |
| 31 | \( 1 + (-0.239 - 0.970i)T^{2} \) |
| 37 | \( 1 + (-0.506 + 0.380i)T + (0.278 - 0.960i)T^{2} \) |
| 41 | \( 1 + (-1.38 - 1.27i)T + (0.0804 + 0.996i)T^{2} \) |
| 43 | \( 1 + (-0.960 + 0.278i)T^{2} \) |
| 47 | \( 1 + (0.748 - 0.663i)T^{2} \) |
| 53 | \( 1 + (0.825 + 0.499i)T + (0.464 + 0.885i)T^{2} \) |
| 59 | \( 1 + (-0.391 - 0.919i)T^{2} \) |
| 61 | \( 1 + (1.38 - 1.44i)T + (-0.0402 - 0.999i)T^{2} \) |
| 67 | \( 1 + (-0.200 - 0.979i)T^{2} \) |
| 71 | \( 1 + (0.903 + 0.428i)T^{2} \) |
| 73 | \( 1 + (0.822 + 0.568i)T + (0.354 + 0.935i)T^{2} \) |
| 79 | \( 1 + (-0.748 + 0.663i)T^{2} \) |
| 83 | \( 1 + (-0.568 + 0.822i)T^{2} \) |
| 89 | \( 1 + (1.92 + 0.516i)T + (0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 + (-0.628 - 1.88i)T + (-0.799 + 0.600i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.654951067993459604627185380839, −8.046857794417080164976848795107, −7.15670474886417504101142902522, −6.23707450903177296309758478383, −5.91651958780361044021295072179, −4.94918250757423534838949596199, −4.40384092068913056899126077970, −3.28936771675559231388682190185, −2.58165295873418800491195823970, −1.22175820384110944478128283519,
1.61340399972871653523371422267, 2.41493731781200731506890920457, 3.04672685704762178504521973879, 4.29877262869242789485202923034, 4.81395154256590254696239841119, 5.79709577197059398577045715831, 6.35233166212696057334351536172, 7.10597335771036114395258723514, 7.81333289126784137970893210905, 8.976522683302745381414792757321