L(s) = 1 | + (0.903 + 0.428i)2-s + (0.632 + 0.774i)4-s + (0.692 − 0.721i)5-s + (0.239 + 0.970i)8-s + (−0.0804 − 0.996i)9-s + (0.935 − 0.354i)10-s + (−0.278 − 0.960i)13-s + (−0.200 + 0.979i)16-s + (−0.176 + 0.0969i)17-s + (0.354 − 0.935i)18-s + (0.996 + 0.0804i)20-s + (−0.0402 − 0.999i)25-s + (0.160 − 0.987i)26-s + (1.52 + 0.724i)29-s + (−0.600 + 0.799i)32-s + ⋯ |
L(s) = 1 | + (0.903 + 0.428i)2-s + (0.632 + 0.774i)4-s + (0.692 − 0.721i)5-s + (0.239 + 0.970i)8-s + (−0.0804 − 0.996i)9-s + (0.935 − 0.354i)10-s + (−0.278 − 0.960i)13-s + (−0.200 + 0.979i)16-s + (−0.176 + 0.0969i)17-s + (0.354 − 0.935i)18-s + (0.996 + 0.0804i)20-s + (−0.0402 − 0.999i)25-s + (0.160 − 0.987i)26-s + (1.52 + 0.724i)29-s + (−0.600 + 0.799i)32-s + ⋯ |
Λ(s)=(=(3380s/2ΓC(s)L(s)(0.998−0.0598i)Λ(1−s)
Λ(s)=(=(3380s/2ΓC(s)L(s)(0.998−0.0598i)Λ(1−s)
Degree: |
2 |
Conductor: |
3380
= 22⋅5⋅132
|
Sign: |
0.998−0.0598i
|
Analytic conductor: |
1.68683 |
Root analytic conductor: |
1.29878 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3380(223,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3380, ( :0), 0.998−0.0598i)
|
Particular Values
L(21) |
≈ |
2.468688157 |
L(21) |
≈ |
2.468688157 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.903−0.428i)T |
| 5 | 1+(−0.692+0.721i)T |
| 13 | 1+(0.278+0.960i)T |
good | 3 | 1+(0.0804+0.996i)T2 |
| 7 | 1+(0.845+0.534i)T2 |
| 11 | 1+(0.160−0.987i)T2 |
| 17 | 1+(0.176−0.0969i)T+(0.534−0.845i)T2 |
| 19 | 1+(−0.866+0.5i)T2 |
| 23 | 1+(−0.866−0.5i)T2 |
| 29 | 1+(−1.52−0.724i)T+(0.632+0.774i)T2 |
| 31 | 1+(−0.239−0.970i)T2 |
| 37 | 1+(−0.506+0.380i)T+(0.278−0.960i)T2 |
| 41 | 1+(−1.38−1.27i)T+(0.0804+0.996i)T2 |
| 43 | 1+(−0.960+0.278i)T2 |
| 47 | 1+(0.748−0.663i)T2 |
| 53 | 1+(0.825+0.499i)T+(0.464+0.885i)T2 |
| 59 | 1+(−0.391−0.919i)T2 |
| 61 | 1+(1.38−1.44i)T+(−0.0402−0.999i)T2 |
| 67 | 1+(−0.200−0.979i)T2 |
| 71 | 1+(0.903+0.428i)T2 |
| 73 | 1+(0.822+0.568i)T+(0.354+0.935i)T2 |
| 79 | 1+(−0.748+0.663i)T2 |
| 83 | 1+(−0.568+0.822i)T2 |
| 89 | 1+(1.92+0.516i)T+(0.866+0.5i)T2 |
| 97 | 1+(−0.628−1.88i)T+(−0.799+0.600i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.654951067993459604627185380839, −8.046857794417080164976848795107, −7.15670474886417504101142902522, −6.23707450903177296309758478383, −5.91651958780361044021295072179, −4.94918250757423534838949596199, −4.40384092068913056899126077970, −3.28936771675559231388682190185, −2.58165295873418800491195823970, −1.22175820384110944478128283519,
1.61340399972871653523371422267, 2.41493731781200731506890920457, 3.04672685704762178504521973879, 4.29877262869242789485202923034, 4.81395154256590254696239841119, 5.79709577197059398577045715831, 6.35233166212696057334351536172, 7.10597335771036114395258723514, 7.81333289126784137970893210905, 8.976522683302745381414792757321