Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3380,1,Mod(7,3380)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3380, base_ring=CyclotomicField(156))
chi = DirichletCharacter(H, H._module([78, 39, 107]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3380.7");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3380.cs (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 |
|
−0.979791 | + | 0.200026i | 0 | 0.919979 | − | 0.391967i | −0.996757 | − | 0.0804666i | 0 | 0 | −0.822984 | + | 0.568065i | 0.316668 | − | 0.948536i | 0.992709 | − | 0.120537i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
123.1 | 0.960518 | + | 0.278217i | 0 | 0.845190 | + | 0.534466i | −0.200026 | + | 0.979791i | 0 | 0 | 0.663123 | + | 0.748511i | −0.721202 | + | 0.692724i | −0.464723 | + | 0.885456i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
167.1 | 0.721202 | − | 0.692724i | 0 | 0.0402659 | − | 0.999189i | 0.948536 | − | 0.316668i | 0 | 0 | −0.663123 | − | 0.748511i | −0.960518 | − | 0.278217i | 0.464723 | − | 0.885456i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
223.1 | 0.903450 | + | 0.428693i | 0 | 0.632445 | + | 0.774605i | 0.692724 | − | 0.721202i | 0 | 0 | 0.239316 | + | 0.970942i | −0.0804666 | − | 0.996757i | 0.935016 | − | 0.354605i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
267.1 | −0.391967 | + | 0.919979i | 0 | −0.692724 | − | 0.721202i | 0.987050 | − | 0.160411i | 0 | 0 | 0.935016 | − | 0.354605i | −0.600742 | − | 0.799443i | −0.239316 | + | 0.970942i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
383.1 | 0.316668 | + | 0.948536i | 0 | −0.799443 | + | 0.600742i | 0.428693 | − | 0.903450i | 0 | 0 | −0.822984 | − | 0.568065i | −0.979791 | − | 0.200026i | 0.992709 | + | 0.120537i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
483.1 | −0.979791 | − | 0.200026i | 0 | 0.919979 | + | 0.391967i | −0.996757 | + | 0.0804666i | 0 | 0 | −0.822984 | − | 0.568065i | 0.316668 | + | 0.948536i | 0.992709 | + | 0.120537i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
527.1 | 0.534466 | + | 0.845190i | 0 | −0.428693 | + | 0.903450i | −0.919979 | + | 0.391967i | 0 | 0 | −0.992709 | + | 0.120537i | −0.999189 | + | 0.0402659i | −0.822984 | − | 0.568065i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
643.1 | −0.600742 | + | 0.799443i | 0 | −0.278217 | − | 0.960518i | −0.632445 | + | 0.774605i | 0 | 0 | 0.935016 | + | 0.354605i | −0.391967 | − | 0.919979i | −0.239316 | − | 0.970942i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
687.1 | 0.960518 | − | 0.278217i | 0 | 0.845190 | − | 0.534466i | −0.200026 | − | 0.979791i | 0 | 0 | 0.663123 | − | 0.748511i | −0.721202 | − | 0.692724i | −0.464723 | − | 0.885456i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
743.1 | 0.999189 | − | 0.0402659i | 0 | 0.996757 | − | 0.0804666i | 0.799443 | + | 0.600742i | 0 | 0 | 0.992709 | − | 0.120537i | −0.534466 | − | 0.845190i | 0.822984 | + | 0.568065i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
787.1 | 0.999189 | + | 0.0402659i | 0 | 0.996757 | + | 0.0804666i | 0.799443 | − | 0.600742i | 0 | 0 | 0.992709 | + | 0.120537i | −0.534466 | + | 0.845190i | 0.822984 | − | 0.568065i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
903.1 | −0.999189 | − | 0.0402659i | 0 | 0.996757 | + | 0.0804666i | 0.799443 | − | 0.600742i | 0 | 0 | −0.992709 | − | 0.120537i | 0.534466 | − | 0.845190i | −0.822984 | + | 0.568065i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
947.1 | −0.999189 | + | 0.0402659i | 0 | 0.996757 | − | 0.0804666i | 0.799443 | + | 0.600742i | 0 | 0 | −0.992709 | + | 0.120537i | 0.534466 | + | 0.845190i | −0.822984 | − | 0.568065i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1003.1 | −0.960518 | + | 0.278217i | 0 | 0.845190 | − | 0.534466i | −0.200026 | − | 0.979791i | 0 | 0 | −0.663123 | + | 0.748511i | 0.721202 | + | 0.692724i | 0.464723 | + | 0.885456i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1047.1 | 0.600742 | − | 0.799443i | 0 | −0.278217 | − | 0.960518i | −0.632445 | + | 0.774605i | 0 | 0 | −0.935016 | − | 0.354605i | 0.391967 | + | 0.919979i | 0.239316 | + | 0.970942i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1163.1 | −0.534466 | − | 0.845190i | 0 | −0.428693 | + | 0.903450i | −0.919979 | + | 0.391967i | 0 | 0 | 0.992709 | − | 0.120537i | 0.999189 | − | 0.0402659i | 0.822984 | + | 0.568065i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1207.1 | 0.979791 | + | 0.200026i | 0 | 0.919979 | + | 0.391967i | −0.996757 | + | 0.0804666i | 0 | 0 | 0.822984 | + | 0.568065i | −0.316668 | − | 0.948536i | −0.992709 | − | 0.120537i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1307.1 | −0.316668 | − | 0.948536i | 0 | −0.799443 | + | 0.600742i | 0.428693 | − | 0.903450i | 0 | 0 | 0.822984 | + | 0.568065i | 0.979791 | + | 0.200026i | −0.992709 | − | 0.120537i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1423.1 | 0.391967 | − | 0.919979i | 0 | −0.692724 | − | 0.721202i | 0.987050 | − | 0.160411i | 0 | 0 | −0.935016 | + | 0.354605i | 0.600742 | + | 0.799443i | 0.239316 | − | 0.970942i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | CM by |
845.bi | even | 156 | 1 | inner |
3380.cs | odd | 156 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3380.1.cs.a | ✓ | 48 |
4.b | odd | 2 | 1 | CM | 3380.1.cs.a | ✓ | 48 |
5.c | odd | 4 | 1 | 3380.1.cz.a | yes | 48 | |
20.e | even | 4 | 1 | 3380.1.cz.a | yes | 48 | |
169.l | odd | 156 | 1 | 3380.1.cz.a | yes | 48 | |
676.w | even | 156 | 1 | 3380.1.cz.a | yes | 48 | |
845.bi | even | 156 | 1 | inner | 3380.1.cs.a | ✓ | 48 |
3380.cs | odd | 156 | 1 | inner | 3380.1.cs.a | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
3380.1.cs.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
3380.1.cs.a | ✓ | 48 | 4.b | odd | 2 | 1 | CM |
3380.1.cs.a | ✓ | 48 | 845.bi | even | 156 | 1 | inner |
3380.1.cs.a | ✓ | 48 | 3380.cs | odd | 156 | 1 | inner |
3380.1.cz.a | yes | 48 | 5.c | odd | 4 | 1 | |
3380.1.cz.a | yes | 48 | 20.e | even | 4 | 1 | |
3380.1.cz.a | yes | 48 | 169.l | odd | 156 | 1 | |
3380.1.cz.a | yes | 48 | 676.w | even | 156 | 1 |
Hecke kernels
This newform subspace is the entire newspace .