Properties

Label 3380.1.cs.a
Level $3380$
Weight $1$
Character orbit 3380.cs
Analytic conductor $1.687$
Analytic rank $0$
Dimension $48$
Projective image $D_{156}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3380,1,Mod(7,3380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3380, base_ring=CyclotomicField(156))
 
chi = DirichletCharacter(H, H._module([78, 39, 107]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3380.7");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3380 = 2^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3380.cs (of order \(156\), degree \(48\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.68683974270\)
Analytic rank: \(0\)
Dimension: \(48\)
Coefficient field: \(\Q(\zeta_{156})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{48} + x^{46} - x^{42} - x^{40} + x^{36} + x^{34} - x^{30} - x^{28} + x^{24} - x^{20} - x^{18} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{156}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{156} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{156}^{41} q^{2} - \zeta_{156}^{4} q^{4} - \zeta_{156}^{46} q^{5} + \zeta_{156}^{45} q^{8} + \zeta_{156}^{67} q^{9} - \zeta_{156}^{9} q^{10} - \zeta_{156}^{20} q^{13} + \zeta_{156}^{8} q^{16} + \cdots - \zeta_{156} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} + 2 q^{5} - 2 q^{13} + 2 q^{16} + 4 q^{17} + 4 q^{18} - 2 q^{20} + 2 q^{25} + 2 q^{34} - 2 q^{41} + 2 q^{49} - 4 q^{52} - 2 q^{53} - 2 q^{58} + 4 q^{64} + 4 q^{65} + 2 q^{68} + 2 q^{72} + 20 q^{74}+ \cdots - 2 q^{90}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3380\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1691\) \(1861\)
\(\chi(n)\) \(-\zeta_{156}^{39}\) \(-1\) \(-\zeta_{156}^{43}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1
−0.774605 0.632445i
−0.600742 0.799443i
0.391967 0.919979i
0.534466 + 0.845190i
−0.979791 0.200026i
−0.160411 0.987050i
−0.774605 + 0.632445i
−0.960518 + 0.278217i
0.316668 0.948536i
−0.600742 + 0.799443i
−0.721202 0.692724i
−0.721202 + 0.692724i
0.721202 0.692724i
0.721202 + 0.692724i
0.600742 0.799443i
−0.316668 + 0.948536i
0.960518 0.278217i
0.774605 0.632445i
0.160411 + 0.987050i
0.979791 + 0.200026i
−0.979791 + 0.200026i 0 0.919979 0.391967i −0.996757 0.0804666i 0 0 −0.822984 + 0.568065i 0.316668 0.948536i 0.992709 0.120537i
123.1 0.960518 + 0.278217i 0 0.845190 + 0.534466i −0.200026 + 0.979791i 0 0 0.663123 + 0.748511i −0.721202 + 0.692724i −0.464723 + 0.885456i
167.1 0.721202 0.692724i 0 0.0402659 0.999189i 0.948536 0.316668i 0 0 −0.663123 0.748511i −0.960518 0.278217i 0.464723 0.885456i
223.1 0.903450 + 0.428693i 0 0.632445 + 0.774605i 0.692724 0.721202i 0 0 0.239316 + 0.970942i −0.0804666 0.996757i 0.935016 0.354605i
267.1 −0.391967 + 0.919979i 0 −0.692724 0.721202i 0.987050 0.160411i 0 0 0.935016 0.354605i −0.600742 0.799443i −0.239316 + 0.970942i
383.1 0.316668 + 0.948536i 0 −0.799443 + 0.600742i 0.428693 0.903450i 0 0 −0.822984 0.568065i −0.979791 0.200026i 0.992709 + 0.120537i
483.1 −0.979791 0.200026i 0 0.919979 + 0.391967i −0.996757 + 0.0804666i 0 0 −0.822984 0.568065i 0.316668 + 0.948536i 0.992709 + 0.120537i
527.1 0.534466 + 0.845190i 0 −0.428693 + 0.903450i −0.919979 + 0.391967i 0 0 −0.992709 + 0.120537i −0.999189 + 0.0402659i −0.822984 0.568065i
643.1 −0.600742 + 0.799443i 0 −0.278217 0.960518i −0.632445 + 0.774605i 0 0 0.935016 + 0.354605i −0.391967 0.919979i −0.239316 0.970942i
687.1 0.960518 0.278217i 0 0.845190 0.534466i −0.200026 0.979791i 0 0 0.663123 0.748511i −0.721202 0.692724i −0.464723 0.885456i
743.1 0.999189 0.0402659i 0 0.996757 0.0804666i 0.799443 + 0.600742i 0 0 0.992709 0.120537i −0.534466 0.845190i 0.822984 + 0.568065i
787.1 0.999189 + 0.0402659i 0 0.996757 + 0.0804666i 0.799443 0.600742i 0 0 0.992709 + 0.120537i −0.534466 + 0.845190i 0.822984 0.568065i
903.1 −0.999189 0.0402659i 0 0.996757 + 0.0804666i 0.799443 0.600742i 0 0 −0.992709 0.120537i 0.534466 0.845190i −0.822984 + 0.568065i
947.1 −0.999189 + 0.0402659i 0 0.996757 0.0804666i 0.799443 + 0.600742i 0 0 −0.992709 + 0.120537i 0.534466 + 0.845190i −0.822984 0.568065i
1003.1 −0.960518 + 0.278217i 0 0.845190 0.534466i −0.200026 0.979791i 0 0 −0.663123 + 0.748511i 0.721202 + 0.692724i 0.464723 + 0.885456i
1047.1 0.600742 0.799443i 0 −0.278217 0.960518i −0.632445 + 0.774605i 0 0 −0.935016 0.354605i 0.391967 + 0.919979i 0.239316 + 0.970942i
1163.1 −0.534466 0.845190i 0 −0.428693 + 0.903450i −0.919979 + 0.391967i 0 0 0.992709 0.120537i 0.999189 0.0402659i 0.822984 + 0.568065i
1207.1 0.979791 + 0.200026i 0 0.919979 + 0.391967i −0.996757 + 0.0804666i 0 0 0.822984 + 0.568065i −0.316668 0.948536i −0.992709 0.120537i
1307.1 −0.316668 0.948536i 0 −0.799443 + 0.600742i 0.428693 0.903450i 0 0 0.822984 + 0.568065i 0.979791 + 0.200026i −0.992709 0.120537i
1423.1 0.391967 0.919979i 0 −0.692724 0.721202i 0.987050 0.160411i 0 0 −0.935016 + 0.354605i 0.600742 + 0.799443i 0.239316 0.970942i
See all 48 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 7.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
845.bi even 156 1 inner
3380.cs odd 156 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3380.1.cs.a 48
4.b odd 2 1 CM 3380.1.cs.a 48
5.c odd 4 1 3380.1.cz.a yes 48
20.e even 4 1 3380.1.cz.a yes 48
169.l odd 156 1 3380.1.cz.a yes 48
676.w even 156 1 3380.1.cz.a yes 48
845.bi even 156 1 inner 3380.1.cs.a 48
3380.cs odd 156 1 inner 3380.1.cs.a 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3380.1.cs.a 48 1.a even 1 1 trivial
3380.1.cs.a 48 4.b odd 2 1 CM
3380.1.cs.a 48 845.bi even 156 1 inner
3380.1.cs.a 48 3380.cs odd 156 1 inner
3380.1.cz.a yes 48 5.c odd 4 1
3380.1.cz.a yes 48 20.e even 4 1
3380.1.cz.a yes 48 169.l odd 156 1
3380.1.cz.a yes 48 676.w even 156 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(3380, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{48} + T^{46} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{48} \) Copy content Toggle raw display
$5$ \( (T^{24} - T^{23} + T^{21} + \cdots + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{48} \) Copy content Toggle raw display
$11$ \( T^{48} \) Copy content Toggle raw display
$13$ \( (T^{24} + T^{23} - T^{21} + \cdots + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{48} - 4 T^{47} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{48} \) Copy content Toggle raw display
$23$ \( T^{48} \) Copy content Toggle raw display
$29$ \( T^{48} + T^{46} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( T^{48} \) Copy content Toggle raw display
$37$ \( T^{48} - 3 T^{46} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{48} + 2 T^{47} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{48} \) Copy content Toggle raw display
$47$ \( T^{48} \) Copy content Toggle raw display
$53$ \( T^{48} + 2 T^{47} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{48} \) Copy content Toggle raw display
$61$ \( T^{48} - 3 T^{46} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{48} \) Copy content Toggle raw display
$71$ \( T^{48} \) Copy content Toggle raw display
$73$ \( (T^{24} - T^{22} + T^{20} + \cdots + 1)^{2} \) Copy content Toggle raw display
$79$ \( T^{48} \) Copy content Toggle raw display
$83$ \( T^{48} \) Copy content Toggle raw display
$89$ \( T^{48} + 2 T^{47} + \cdots + 1 \) Copy content Toggle raw display
$97$ \( (T^{24} - 13 T^{20} + \cdots + 169)^{2} \) Copy content Toggle raw display
show more
show less