Properties

Label 3380.1.cs.a
Level 33803380
Weight 11
Character orbit 3380.cs
Analytic conductor 1.6871.687
Analytic rank 00
Dimension 4848
Projective image D156D_{156}
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3380,1,Mod(7,3380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3380, base_ring=CyclotomicField(156))
 
chi = DirichletCharacter(H, H._module([78, 39, 107]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3380.7");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3380=225132 3380 = 2^{2} \cdot 5 \cdot 13^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3380.cs (of order 156156, degree 4848, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.686839742701.68683974270
Analytic rank: 00
Dimension: 4848
Coefficient field: Q(ζ156)\Q(\zeta_{156})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x48+x46x42x40+x36+x34x30x28+x24x20x18++1 x^{48} + x^{46} - x^{42} - x^{40} + x^{36} + x^{34} - x^{30} - x^{28} + x^{24} - x^{20} - x^{18} + \cdots + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D156D_{156}
Projective field: Galois closure of Q[x]/(x156)\mathbb{Q}[x]/(x^{156} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ15641q2ζ1564q4ζ15646q5+ζ15645q8+ζ15667q9ζ1569q10ζ15620q13+ζ1568q16+ζ156q98+O(q100) q - \zeta_{156}^{41} q^{2} - \zeta_{156}^{4} q^{4} - \zeta_{156}^{46} q^{5} + \zeta_{156}^{45} q^{8} + \zeta_{156}^{67} q^{9} - \zeta_{156}^{9} q^{10} - \zeta_{156}^{20} q^{13} + \zeta_{156}^{8} q^{16} + \cdots - \zeta_{156} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 48q2q4+2q52q13+2q16+4q17+4q182q20+2q25+2q342q41+2q494q522q532q58+4q64+4q65+2q68+2q72+20q74+2q90+O(q100) 48 q - 2 q^{4} + 2 q^{5} - 2 q^{13} + 2 q^{16} + 4 q^{17} + 4 q^{18} - 2 q^{20} + 2 q^{25} + 2 q^{34} - 2 q^{41} + 2 q^{49} - 4 q^{52} - 2 q^{53} - 2 q^{58} + 4 q^{64} + 4 q^{65} + 2 q^{68} + 2 q^{72} + 20 q^{74}+ \cdots - 2 q^{90}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3380Z)×\left(\mathbb{Z}/3380\mathbb{Z}\right)^\times.

nn 677677 16911691 18611861
χ(n)\chi(n) ζ15639-\zeta_{156}^{39} 1-1 ζ15643-\zeta_{156}^{43}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
7.1
−0.774605 0.632445i
−0.600742 0.799443i
0.391967 0.919979i
0.534466 + 0.845190i
−0.979791 0.200026i
−0.160411 0.987050i
−0.774605 + 0.632445i
−0.960518 + 0.278217i
0.316668 0.948536i
−0.600742 + 0.799443i
−0.721202 0.692724i
−0.721202 + 0.692724i
0.721202 0.692724i
0.721202 + 0.692724i
0.600742 0.799443i
−0.316668 + 0.948536i
0.960518 0.278217i
0.774605 0.632445i
0.160411 + 0.987050i
0.979791 + 0.200026i
−0.979791 + 0.200026i 0 0.919979 0.391967i −0.996757 0.0804666i 0 0 −0.822984 + 0.568065i 0.316668 0.948536i 0.992709 0.120537i
123.1 0.960518 + 0.278217i 0 0.845190 + 0.534466i −0.200026 + 0.979791i 0 0 0.663123 + 0.748511i −0.721202 + 0.692724i −0.464723 + 0.885456i
167.1 0.721202 0.692724i 0 0.0402659 0.999189i 0.948536 0.316668i 0 0 −0.663123 0.748511i −0.960518 0.278217i 0.464723 0.885456i
223.1 0.903450 + 0.428693i 0 0.632445 + 0.774605i 0.692724 0.721202i 0 0 0.239316 + 0.970942i −0.0804666 0.996757i 0.935016 0.354605i
267.1 −0.391967 + 0.919979i 0 −0.692724 0.721202i 0.987050 0.160411i 0 0 0.935016 0.354605i −0.600742 0.799443i −0.239316 + 0.970942i
383.1 0.316668 + 0.948536i 0 −0.799443 + 0.600742i 0.428693 0.903450i 0 0 −0.822984 0.568065i −0.979791 0.200026i 0.992709 + 0.120537i
483.1 −0.979791 0.200026i 0 0.919979 + 0.391967i −0.996757 + 0.0804666i 0 0 −0.822984 0.568065i 0.316668 + 0.948536i 0.992709 + 0.120537i
527.1 0.534466 + 0.845190i 0 −0.428693 + 0.903450i −0.919979 + 0.391967i 0 0 −0.992709 + 0.120537i −0.999189 + 0.0402659i −0.822984 0.568065i
643.1 −0.600742 + 0.799443i 0 −0.278217 0.960518i −0.632445 + 0.774605i 0 0 0.935016 + 0.354605i −0.391967 0.919979i −0.239316 0.970942i
687.1 0.960518 0.278217i 0 0.845190 0.534466i −0.200026 0.979791i 0 0 0.663123 0.748511i −0.721202 0.692724i −0.464723 0.885456i
743.1 0.999189 0.0402659i 0 0.996757 0.0804666i 0.799443 + 0.600742i 0 0 0.992709 0.120537i −0.534466 0.845190i 0.822984 + 0.568065i
787.1 0.999189 + 0.0402659i 0 0.996757 + 0.0804666i 0.799443 0.600742i 0 0 0.992709 + 0.120537i −0.534466 + 0.845190i 0.822984 0.568065i
903.1 −0.999189 0.0402659i 0 0.996757 + 0.0804666i 0.799443 0.600742i 0 0 −0.992709 0.120537i 0.534466 0.845190i −0.822984 + 0.568065i
947.1 −0.999189 + 0.0402659i 0 0.996757 0.0804666i 0.799443 + 0.600742i 0 0 −0.992709 + 0.120537i 0.534466 + 0.845190i −0.822984 0.568065i
1003.1 −0.960518 + 0.278217i 0 0.845190 0.534466i −0.200026 0.979791i 0 0 −0.663123 + 0.748511i 0.721202 + 0.692724i 0.464723 + 0.885456i
1047.1 0.600742 0.799443i 0 −0.278217 0.960518i −0.632445 + 0.774605i 0 0 −0.935016 0.354605i 0.391967 + 0.919979i 0.239316 + 0.970942i
1163.1 −0.534466 0.845190i 0 −0.428693 + 0.903450i −0.919979 + 0.391967i 0 0 0.992709 0.120537i 0.999189 0.0402659i 0.822984 + 0.568065i
1207.1 0.979791 + 0.200026i 0 0.919979 + 0.391967i −0.996757 + 0.0804666i 0 0 0.822984 + 0.568065i −0.316668 0.948536i −0.992709 0.120537i
1307.1 −0.316668 0.948536i 0 −0.799443 + 0.600742i 0.428693 0.903450i 0 0 0.822984 + 0.568065i 0.979791 + 0.200026i −0.992709 0.120537i
1423.1 0.391967 0.919979i 0 −0.692724 0.721202i 0.987050 0.160411i 0 0 −0.935016 + 0.354605i 0.600742 + 0.799443i 0.239316 0.970942i
See all 48 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 7.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
845.bi even 156 1 inner
3380.cs odd 156 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3380.1.cs.a 48
4.b odd 2 1 CM 3380.1.cs.a 48
5.c odd 4 1 3380.1.cz.a yes 48
20.e even 4 1 3380.1.cz.a yes 48
169.l odd 156 1 3380.1.cz.a yes 48
676.w even 156 1 3380.1.cz.a yes 48
845.bi even 156 1 inner 3380.1.cs.a 48
3380.cs odd 156 1 inner 3380.1.cs.a 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3380.1.cs.a 48 1.a even 1 1 trivial
3380.1.cs.a 48 4.b odd 2 1 CM
3380.1.cs.a 48 845.bi even 156 1 inner
3380.1.cs.a 48 3380.cs odd 156 1 inner
3380.1.cz.a yes 48 5.c odd 4 1
3380.1.cz.a yes 48 20.e even 4 1
3380.1.cz.a yes 48 169.l odd 156 1
3380.1.cz.a yes 48 676.w even 156 1

Hecke kernels

This newform subspace is the entire newspace S1new(3380,[χ])S_{1}^{\mathrm{new}}(3380, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T48+T46++1 T^{48} + T^{46} + \cdots + 1 Copy content Toggle raw display
33 T48 T^{48} Copy content Toggle raw display
55 (T24T23+T21++1)2 (T^{24} - T^{23} + T^{21} + \cdots + 1)^{2} Copy content Toggle raw display
77 T48 T^{48} Copy content Toggle raw display
1111 T48 T^{48} Copy content Toggle raw display
1313 (T24+T23T21++1)2 (T^{24} + T^{23} - T^{21} + \cdots + 1)^{2} Copy content Toggle raw display
1717 T484T47++1 T^{48} - 4 T^{47} + \cdots + 1 Copy content Toggle raw display
1919 T48 T^{48} Copy content Toggle raw display
2323 T48 T^{48} Copy content Toggle raw display
2929 T48+T46++1 T^{48} + T^{46} + \cdots + 1 Copy content Toggle raw display
3131 T48 T^{48} Copy content Toggle raw display
3737 T483T46++1 T^{48} - 3 T^{46} + \cdots + 1 Copy content Toggle raw display
4141 T48+2T47++1 T^{48} + 2 T^{47} + \cdots + 1 Copy content Toggle raw display
4343 T48 T^{48} Copy content Toggle raw display
4747 T48 T^{48} Copy content Toggle raw display
5353 T48+2T47++1 T^{48} + 2 T^{47} + \cdots + 1 Copy content Toggle raw display
5959 T48 T^{48} Copy content Toggle raw display
6161 T483T46++1 T^{48} - 3 T^{46} + \cdots + 1 Copy content Toggle raw display
6767 T48 T^{48} Copy content Toggle raw display
7171 T48 T^{48} Copy content Toggle raw display
7373 (T24T22+T20++1)2 (T^{24} - T^{22} + T^{20} + \cdots + 1)^{2} Copy content Toggle raw display
7979 T48 T^{48} Copy content Toggle raw display
8383 T48 T^{48} Copy content Toggle raw display
8989 T48+2T47++1 T^{48} + 2 T^{47} + \cdots + 1 Copy content Toggle raw display
9797 (T2413T20++169)2 (T^{24} - 13 T^{20} + \cdots + 169)^{2} Copy content Toggle raw display
show more
show less