L(s) = 1 | + (0.316 + 0.948i)2-s + (−0.799 + 0.600i)4-s + (0.428 − 0.903i)5-s + (−0.822 − 0.568i)8-s + (−0.979 − 0.200i)9-s + (0.992 + 0.120i)10-s + (0.996 − 0.0804i)13-s + (0.278 − 0.960i)16-s + (1.28 + 1.50i)17-s + (−0.120 − 0.992i)18-s + (0.200 + 0.979i)20-s + (−0.632 − 0.774i)25-s + (0.391 + 0.919i)26-s + (−0.625 − 1.87i)29-s + (0.999 − 0.0402i)32-s + ⋯ |
L(s) = 1 | + (0.316 + 0.948i)2-s + (−0.799 + 0.600i)4-s + (0.428 − 0.903i)5-s + (−0.822 − 0.568i)8-s + (−0.979 − 0.200i)9-s + (0.992 + 0.120i)10-s + (0.996 − 0.0804i)13-s + (0.278 − 0.960i)16-s + (1.28 + 1.50i)17-s + (−0.120 − 0.992i)18-s + (0.200 + 0.979i)20-s + (−0.632 − 0.774i)25-s + (0.391 + 0.919i)26-s + (−0.625 − 1.87i)29-s + (0.999 − 0.0402i)32-s + ⋯ |
Λ(s)=(=(3380s/2ΓC(s)L(s)(0.818−0.573i)Λ(1−s)
Λ(s)=(=(3380s/2ΓC(s)L(s)(0.818−0.573i)Λ(1−s)
Degree: |
2 |
Conductor: |
3380
= 22⋅5⋅132
|
Sign: |
0.818−0.573i
|
Analytic conductor: |
1.68683 |
Root analytic conductor: |
1.29878 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3380(383,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3380, ( :0), 0.818−0.573i)
|
Particular Values
L(21) |
≈ |
1.420301410 |
L(21) |
≈ |
1.420301410 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.316−0.948i)T |
| 5 | 1+(−0.428+0.903i)T |
| 13 | 1+(−0.996+0.0804i)T |
good | 3 | 1+(0.979+0.200i)T2 |
| 7 | 1+(−0.987−0.160i)T2 |
| 11 | 1+(0.391+0.919i)T2 |
| 17 | 1+(−1.28−1.50i)T+(−0.160+0.987i)T2 |
| 19 | 1+(0.866+0.5i)T2 |
| 23 | 1+(0.866−0.5i)T2 |
| 29 | 1+(0.625+1.87i)T+(−0.799+0.600i)T2 |
| 31 | 1+(0.822+0.568i)T2 |
| 37 | 1+(−0.0580+1.44i)T+(−0.996−0.0804i)T2 |
| 41 | 1+(−1.78−0.179i)T+(0.979+0.200i)T2 |
| 43 | 1+(−0.0804−0.996i)T2 |
| 47 | 1+(0.970+0.239i)T2 |
| 53 | 1+(−1.49+0.274i)T+(0.935−0.354i)T2 |
| 59 | 1+(−0.534−0.845i)T2 |
| 61 | 1+(0.664−1.39i)T+(−0.632−0.774i)T2 |
| 67 | 1+(0.278+0.960i)T2 |
| 71 | 1+(0.316+0.948i)T2 |
| 73 | 1+(−0.663−0.748i)T+(−0.120+0.992i)T2 |
| 79 | 1+(−0.970−0.239i)T2 |
| 83 | 1+(0.748−0.663i)T2 |
| 89 | 1+(−0.267−0.999i)T+(−0.866+0.5i)T2 |
| 97 | 1+(−0.670+0.643i)T+(0.0402−0.999i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.717550503802671265876487034549, −8.105890817115715791891659481479, −7.56790742653017248779721540850, −6.26372291721405183492315688677, −5.73277662279346476540879444279, −5.55815531920154732676483867057, −4.13782111858846726055455030178, −3.80496597957116759505926663948, −2.47169665925952121950307818258, −0.943251840937850096302143508298,
1.17244578880822093606922565113, 2.41410101397926886016974387259, 3.11273183798426328358523820920, 3.66540100225384444799281919250, 4.99604580051880279808347901541, 5.57423171102884303452538647193, 6.23806020771007030577987685460, 7.21324585374728842745521430017, 8.085422669194973100493695881582, 9.053740472708010566802146051375