Properties

Label 3380.1
Level 3380
Weight 1
Dimension 378
Nonzero newspaces 14
Newform subspaces 47
Sturm bound 681408
Trace bound 4

Downloads

Learn more

Defining parameters

Level: N N = 3380=225132 3380 = 2^{2} \cdot 5 \cdot 13^{2}
Weight: k k = 1 1
Nonzero newspaces: 14 14
Newform subspaces: 47 47
Sturm bound: 681408681408
Trace bound: 44

Dimensions

The following table gives the dimensions of various subspaces of M1(Γ1(3380))M_{1}(\Gamma_1(3380)).

Total New Old
Modular forms 5074 1604 3470
Cusp forms 514 378 136
Eisenstein series 4560 1226 3334

The following table gives the dimensions of subspaces with specified projective image type.

DnD_n A4A_4 S4S_4 A5A_5
Dimension 378 0 0 0

Trace form

378q+12q8+6q1024q14+12q17+12q18+6q20+12q29+12q37+12q41+6q4518q506q5212q58+12q6112q64+3q6512q68++6q85+O(q100) 378 q + 12 q^{8} + 6 q^{10} - 24 q^{14} + 12 q^{17} + 12 q^{18} + 6 q^{20} + 12 q^{29} + 12 q^{37} + 12 q^{41} + 6 q^{45} - 18 q^{50} - 6 q^{52} - 12 q^{58} + 12 q^{61} - 12 q^{64} + 3 q^{65} - 12 q^{68}+ \cdots + 6 q^{85}+O(q^{100}) Copy content Toggle raw display

Decomposition of S1new(Γ1(3380))S_{1}^{\mathrm{new}}(\Gamma_1(3380))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
3380.1.b χ3380(1691,)\chi_{3380}(1691, \cdot) None 0 1
3380.1.e χ3380(1351,)\chi_{3380}(1351, \cdot) None 0 1
3380.1.g χ3380(3379,)\chi_{3380}(3379, \cdot) 3380.1.g.a 2 1
3380.1.g.b 2
3380.1.g.c 6
3380.1.g.d 6
3380.1.h χ3380(339,)\chi_{3380}(339, \cdot) 3380.1.h.a 2 1
3380.1.h.b 3
3380.1.h.c 3
3380.1.h.d 3
3380.1.h.e 3
3380.1.h.f 4
3380.1.k χ3380(1789,)\chi_{3380}(1789, \cdot) None 0 2
3380.1.l χ3380(2127,)\chi_{3380}(2127, \cdot) 3380.1.l.a 2 2
3380.1.l.b 4
3380.1.l.c 4
3380.1.n χ3380(337,)\chi_{3380}(337, \cdot) None 0 2
3380.1.q χ3380(677,)\chi_{3380}(677, \cdot) None 0 2
3380.1.s χ3380(2267,)\chi_{3380}(2267, \cdot) 3380.1.s.a 2 2
3380.1.s.b 4
3380.1.s.c 4
3380.1.t χ3380(3141,)\chi_{3380}(3141, \cdot) None 0 2
3380.1.v χ3380(2219,)\chi_{3380}(2219, \cdot) 3380.1.v.a 4 2
3380.1.v.b 4
3380.1.v.c 4
3380.1.v.d 6
3380.1.v.e 6
3380.1.v.f 6
3380.1.v.g 6
3380.1.w χ3380(699,)\chi_{3380}(699, \cdot) 3380.1.w.a 2 2
3380.1.w.b 2
3380.1.w.c 2
3380.1.w.d 2
3380.1.w.e 12
3380.1.w.f 12
3380.1.y χ3380(2051,)\chi_{3380}(2051, \cdot) None 0 2
3380.1.bb χ3380(191,)\chi_{3380}(191, \cdot) None 0 2
3380.1.bd χ3380(1441,)\chi_{3380}(1441, \cdot) None 0 4
3380.1.be χ3380(587,)\chi_{3380}(587, \cdot) 3380.1.be.a 4 4
3380.1.be.b 4
3380.1.be.c 4
3380.1.be.d 4
3380.1.be.e 4
3380.1.bh χ3380(653,)\chi_{3380}(653, \cdot) None 0 4
3380.1.bi χ3380(1037,)\chi_{3380}(1037, \cdot) None 0 4
3380.1.bl χ3380(427,)\chi_{3380}(427, \cdot) 3380.1.bl.a 4 4
3380.1.bl.b 4
3380.1.bl.c 4
3380.1.bl.d 4
3380.1.bl.e 4
3380.1.bm χ3380(89,)\chi_{3380}(89, \cdot) None 0 4
3380.1.bp χ3380(79,)\chi_{3380}(79, \cdot) None 0 12
3380.1.bq χ3380(259,)\chi_{3380}(259, \cdot) 3380.1.bq.a 12 12
3380.1.bq.b 12
3380.1.bs χ3380(51,)\chi_{3380}(51, \cdot) None 0 12
3380.1.bv χ3380(131,)\chi_{3380}(131, \cdot) None 0 12
3380.1.by χ3380(21,)\chi_{3380}(21, \cdot) None 0 24
3380.1.bz χ3380(187,)\chi_{3380}(187, \cdot) 3380.1.bz.a 24 24
3380.1.cb χ3380(53,)\chi_{3380}(53, \cdot) None 0 24
3380.1.ce χ3380(77,)\chi_{3380}(77, \cdot) None 0 24
3380.1.cg χ3380(47,)\chi_{3380}(47, \cdot) 3380.1.cg.a 24 24
3380.1.ch χ3380(109,)\chi_{3380}(109, \cdot) None 0 24
3380.1.cj χ3380(211,)\chi_{3380}(211, \cdot) None 0 24
3380.1.cm χ3380(231,)\chi_{3380}(231, \cdot) None 0 24
3380.1.co χ3380(179,)\chi_{3380}(179, \cdot) 3380.1.co.a 24 24
3380.1.co.b 24
3380.1.cp χ3380(139,)\chi_{3380}(139, \cdot) None 0 24
3380.1.cr χ3380(149,)\chi_{3380}(149, \cdot) None 0 48
3380.1.cs χ3380(7,)\chi_{3380}(7, \cdot) 3380.1.cs.a 48 48
3380.1.cv χ3380(17,)\chi_{3380}(17, \cdot) None 0 48
3380.1.cw χ3380(113,)\chi_{3380}(113, \cdot) None 0 48
3380.1.cz χ3380(63,)\chi_{3380}(63, \cdot) 3380.1.cz.a 48 48
3380.1.da χ3380(41,)\chi_{3380}(41, \cdot) None 0 48

Decomposition of S1old(Γ1(3380))S_{1}^{\mathrm{old}}(\Gamma_1(3380)) into lower level spaces

S1old(Γ1(3380)) S_{1}^{\mathrm{old}}(\Gamma_1(3380)) \cong S1new(Γ1(1))S_{1}^{\mathrm{new}}(\Gamma_1(1))18^{\oplus 18}\oplusS1new(Γ1(2))S_{1}^{\mathrm{new}}(\Gamma_1(2))12^{\oplus 12}\oplusS1new(Γ1(4))S_{1}^{\mathrm{new}}(\Gamma_1(4))6^{\oplus 6}\oplusS1new(Γ1(5))S_{1}^{\mathrm{new}}(\Gamma_1(5))9^{\oplus 9}\oplusS1new(Γ1(10))S_{1}^{\mathrm{new}}(\Gamma_1(10))6^{\oplus 6}\oplusS1new(Γ1(13))S_{1}^{\mathrm{new}}(\Gamma_1(13))12^{\oplus 12}\oplusS1new(Γ1(20))S_{1}^{\mathrm{new}}(\Gamma_1(20))3^{\oplus 3}\oplusS1new(Γ1(26))S_{1}^{\mathrm{new}}(\Gamma_1(26))8^{\oplus 8}\oplusS1new(Γ1(52))S_{1}^{\mathrm{new}}(\Gamma_1(52))4^{\oplus 4}\oplusS1new(Γ1(65))S_{1}^{\mathrm{new}}(\Gamma_1(65))6^{\oplus 6}\oplusS1new(Γ1(130))S_{1}^{\mathrm{new}}(\Gamma_1(130))4^{\oplus 4}\oplusS1new(Γ1(169))S_{1}^{\mathrm{new}}(\Gamma_1(169))6^{\oplus 6}\oplusS1new(Γ1(260))S_{1}^{\mathrm{new}}(\Gamma_1(260))2^{\oplus 2}\oplusS1new(Γ1(338))S_{1}^{\mathrm{new}}(\Gamma_1(338))4^{\oplus 4}\oplusS1new(Γ1(676))S_{1}^{\mathrm{new}}(\Gamma_1(676))2^{\oplus 2}\oplusS1new(Γ1(845))S_{1}^{\mathrm{new}}(\Gamma_1(845))3^{\oplus 3}\oplusS1new(Γ1(1690))S_{1}^{\mathrm{new}}(\Gamma_1(1690))2^{\oplus 2}