from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3380, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([78,117,43]))
chi.galois_orbit()
[g,chi] = znchar(Mod(63,3380))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(3380\) | |
Conductor: | \(3380\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(156\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{156})$ |
Fixed field: | Number field defined by a degree 156 polynomial (not computed) |
First 31 of 48 characters in Galois orbit
Character | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{3380}(63,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{145}{156}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{67}{78}\right)\) | \(e\left(\frac{139}{156}\right)\) | \(e\left(\frac{155}{156}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{41}{52}\right)\) | \(e\left(\frac{41}{78}\right)\) |
\(\chi_{3380}(67,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{103}{156}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{25}{78}\right)\) | \(e\left(\frac{145}{156}\right)\) | \(e\left(\frac{137}{156}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{41}{52}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{77}{78}\right)\) |
\(\chi_{3380}(163,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{17}{156}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{17}{78}\right)\) | \(e\left(\frac{83}{156}\right)\) | \(e\left(\frac{115}{156}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{31}{52}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{17}{52}\right)\) | \(e\left(\frac{43}{78}\right)\) |
\(\chi_{3380}(227,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{131}{156}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{89}{156}\right)\) | \(e\left(\frac{97}{156}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{1}{78}\right)\) |
\(\chi_{3380}(323,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{73}{156}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{127}{156}\right)\) | \(e\left(\frac{35}{156}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{47}{78}\right)\) |
\(\chi_{3380}(327,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{19}{156}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{19}{78}\right)\) | \(e\left(\frac{1}{156}\right)\) | \(e\left(\frac{101}{156}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{71}{78}\right)\) |
\(\chi_{3380}(423,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{149}{156}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{71}{78}\right)\) | \(e\left(\frac{131}{156}\right)\) | \(e\left(\frac{127}{156}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{19}{78}\right)\) |
\(\chi_{3380}(487,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{155}{156}\right)\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{77}{78}\right)\) | \(e\left(\frac{41}{156}\right)\) | \(e\left(\frac{85}{156}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{41}{52}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{25}{78}\right)\) |
\(\chi_{3380}(583,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{156}\right)\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{115}{156}\right)\) | \(e\left(\frac{71}{156}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{53}{78}\right)\) |
\(\chi_{3380}(683,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{125}{156}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{47}{78}\right)\) | \(e\left(\frac{23}{156}\right)\) | \(e\left(\frac{139}{156}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{73}{78}\right)\) |
\(\chi_{3380}(747,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{23}{156}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{23}{78}\right)\) | \(e\left(\frac{149}{156}\right)\) | \(e\left(\frac{73}{156}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{49}{78}\right)\) |
\(\chi_{3380}(843,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{85}{156}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{7}{78}\right)\) | \(e\left(\frac{103}{156}\right)\) | \(e\left(\frac{107}{156}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{33}{52}\right)\) | \(e\left(\frac{59}{78}\right)\) |
\(\chi_{3380}(847,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{7}{156}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{7}{78}\right)\) | \(e\left(\frac{25}{156}\right)\) | \(e\left(\frac{29}{156}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{59}{78}\right)\) |
\(\chi_{3380}(943,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{101}{156}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{23}{78}\right)\) | \(e\left(\frac{71}{156}\right)\) | \(e\left(\frac{151}{156}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{49}{78}\right)\) |
\(\chi_{3380}(1007,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{47}{156}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{47}{78}\right)\) | \(e\left(\frac{101}{156}\right)\) | \(e\left(\frac{61}{156}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{73}{78}\right)\) |
\(\chi_{3380}(1107,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{79}{156}\right)\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{37}{156}\right)\) | \(e\left(\frac{149}{156}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{53}{78}\right)\) |
\(\chi_{3380}(1203,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{77}{156}\right)\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{77}{78}\right)\) | \(e\left(\frac{119}{156}\right)\) | \(e\left(\frac{7}{156}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{25}{78}\right)\) |
\(\chi_{3380}(1267,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{71}{156}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{71}{78}\right)\) | \(e\left(\frac{53}{156}\right)\) | \(e\left(\frac{49}{156}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{19}{78}\right)\) |
\(\chi_{3380}(1363,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{97}{156}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{19}{78}\right)\) | \(e\left(\frac{79}{156}\right)\) | \(e\left(\frac{23}{156}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{71}{78}\right)\) |
\(\chi_{3380}(1367,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{151}{156}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{49}{156}\right)\) | \(e\left(\frac{113}{156}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{47}{78}\right)\) |
\(\chi_{3380}(1463,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{53}{156}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{11}{156}\right)\) | \(e\left(\frac{19}{156}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{1}{78}\right)\) |
\(\chi_{3380}(1527,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{95}{156}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{17}{78}\right)\) | \(e\left(\frac{5}{156}\right)\) | \(e\left(\frac{37}{156}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{43}{78}\right)\) |
\(\chi_{3380}(1623,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{25}{156}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{25}{78}\right)\) | \(e\left(\frac{67}{156}\right)\) | \(e\left(\frac{59}{156}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{77}{78}\right)\) |
\(\chi_{3380}(1627,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{67}{156}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{67}{78}\right)\) | \(e\left(\frac{61}{156}\right)\) | \(e\left(\frac{77}{156}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{41}{78}\right)\) |
\(\chi_{3380}(1723,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{29}{156}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{29}{78}\right)\) | \(e\left(\frac{59}{156}\right)\) | \(e\left(\frac{31}{156}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{29}{52}\right)\) | \(e\left(\frac{55}{78}\right)\) |
\(\chi_{3380}(1787,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{119}{156}\right)\) | \(e\left(\frac{16}{39}\right)\) | \(e\left(\frac{41}{78}\right)\) | \(e\left(\frac{113}{156}\right)\) | \(e\left(\frac{25}{156}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{67}{78}\right)\) |
\(\chi_{3380}(1883,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{109}{156}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{31}{78}\right)\) | \(e\left(\frac{55}{156}\right)\) | \(e\left(\frac{95}{156}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{5}{78}\right)\) |
\(\chi_{3380}(1887,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{139}{156}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{61}{78}\right)\) | \(e\left(\frac{73}{156}\right)\) | \(e\left(\frac{41}{156}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{35}{78}\right)\) |
\(\chi_{3380}(1983,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{156}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{107}{156}\right)\) | \(e\left(\frac{43}{156}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{31}{78}\right)\) |
\(\chi_{3380}(2143,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{37}{156}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{37}{78}\right)\) | \(e\left(\frac{43}{156}\right)\) | \(e\left(\frac{131}{156}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{11}{78}\right)\) |
\(\chi_{3380}(2147,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{55}{156}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{55}{78}\right)\) | \(e\left(\frac{85}{156}\right)\) | \(e\left(\frac{5}{156}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{33}{52}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{29}{78}\right)\) |