Properties

Label 3380.943
Modulus 33803380
Conductor 33803380
Order 156156
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3380, base_ring=CyclotomicField(156))
 
M = H._module
 
chi = DirichletCharacter(H, M([78,117,59]))
 
pari: [g,chi] = znchar(Mod(943,3380))
 

Basic properties

Modulus: 33803380
Conductor: 33803380
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 156156
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3380.cz

χ3380(63,)\chi_{3380}(63,\cdot) χ3380(67,)\chi_{3380}(67,\cdot) χ3380(163,)\chi_{3380}(163,\cdot) χ3380(227,)\chi_{3380}(227,\cdot) χ3380(323,)\chi_{3380}(323,\cdot) χ3380(327,)\chi_{3380}(327,\cdot) χ3380(423,)\chi_{3380}(423,\cdot) χ3380(487,)\chi_{3380}(487,\cdot) χ3380(583,)\chi_{3380}(583,\cdot) χ3380(683,)\chi_{3380}(683,\cdot) χ3380(747,)\chi_{3380}(747,\cdot) χ3380(843,)\chi_{3380}(843,\cdot) χ3380(847,)\chi_{3380}(847,\cdot) χ3380(943,)\chi_{3380}(943,\cdot) χ3380(1007,)\chi_{3380}(1007,\cdot) χ3380(1107,)\chi_{3380}(1107,\cdot) χ3380(1203,)\chi_{3380}(1203,\cdot) χ3380(1267,)\chi_{3380}(1267,\cdot) χ3380(1363,)\chi_{3380}(1363,\cdot) χ3380(1367,)\chi_{3380}(1367,\cdot) χ3380(1463,)\chi_{3380}(1463,\cdot) χ3380(1527,)\chi_{3380}(1527,\cdot) χ3380(1623,)\chi_{3380}(1623,\cdot) χ3380(1627,)\chi_{3380}(1627,\cdot) χ3380(1723,)\chi_{3380}(1723,\cdot) χ3380(1787,)\chi_{3380}(1787,\cdot) χ3380(1883,)\chi_{3380}(1883,\cdot) χ3380(1887,)\chi_{3380}(1887,\cdot) χ3380(1983,)\chi_{3380}(1983,\cdot) χ3380(2143,)\chi_{3380}(2143,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ156)\Q(\zeta_{156})
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

(1691,677,1861)(1691,677,1861)(1,i,e(59156))(-1,-i,e\left(\frac{59}{156}\right))

First values

aa 1-1113377991111171719192121232327272929
χ3380(943,a) \chi_{ 3380 }(943, a) 1-111e(101156)e\left(\frac{101}{156}\right)e(2839)e\left(\frac{28}{39}\right)e(2378)e\left(\frac{23}{78}\right)e(71156)e\left(\frac{71}{156}\right)e(151156)e\left(\frac{151}{156}\right)e(712)e\left(\frac{7}{12}\right)e(1952)e\left(\frac{19}{52}\right)e(1112)e\left(\frac{11}{12}\right)e(4952)e\left(\frac{49}{52}\right)e(4978)e\left(\frac{49}{78}\right)
sage: chi.jacobi_sum(n)
 
χ3380(943,a)   \chi_{ 3380 }(943,a) \; at   a=\;a = e.g. 2