Basic properties
Modulus: | \(3380\) | |
Conductor: | \(3380\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(156\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3380.cz
\(\chi_{3380}(63,\cdot)\) \(\chi_{3380}(67,\cdot)\) \(\chi_{3380}(163,\cdot)\) \(\chi_{3380}(227,\cdot)\) \(\chi_{3380}(323,\cdot)\) \(\chi_{3380}(327,\cdot)\) \(\chi_{3380}(423,\cdot)\) \(\chi_{3380}(487,\cdot)\) \(\chi_{3380}(583,\cdot)\) \(\chi_{3380}(683,\cdot)\) \(\chi_{3380}(747,\cdot)\) \(\chi_{3380}(843,\cdot)\) \(\chi_{3380}(847,\cdot)\) \(\chi_{3380}(943,\cdot)\) \(\chi_{3380}(1007,\cdot)\) \(\chi_{3380}(1107,\cdot)\) \(\chi_{3380}(1203,\cdot)\) \(\chi_{3380}(1267,\cdot)\) \(\chi_{3380}(1363,\cdot)\) \(\chi_{3380}(1367,\cdot)\) \(\chi_{3380}(1463,\cdot)\) \(\chi_{3380}(1527,\cdot)\) \(\chi_{3380}(1623,\cdot)\) \(\chi_{3380}(1627,\cdot)\) \(\chi_{3380}(1723,\cdot)\) \(\chi_{3380}(1787,\cdot)\) \(\chi_{3380}(1883,\cdot)\) \(\chi_{3380}(1887,\cdot)\) \(\chi_{3380}(1983,\cdot)\) \(\chi_{3380}(2143,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{156})$ |
Fixed field: | Number field defined by a degree 156 polynomial (not computed) |
Values on generators
\((1691,677,1861)\) → \((-1,-i,e\left(\frac{59}{156}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 3380 }(943, a) \) | \(-1\) | \(1\) | \(e\left(\frac{101}{156}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{23}{78}\right)\) | \(e\left(\frac{71}{156}\right)\) | \(e\left(\frac{151}{156}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{49}{78}\right)\) |