from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3380, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([78,39,121]))
pari: [g,chi] = znchar(Mod(1627,3380))
χ3380(63,⋅)
χ3380(67,⋅)
χ3380(163,⋅)
χ3380(227,⋅)
χ3380(323,⋅)
χ3380(327,⋅)
χ3380(423,⋅)
χ3380(487,⋅)
χ3380(583,⋅)
χ3380(683,⋅)
χ3380(747,⋅)
χ3380(843,⋅)
χ3380(847,⋅)
χ3380(943,⋅)
χ3380(1007,⋅)
χ3380(1107,⋅)
χ3380(1203,⋅)
χ3380(1267,⋅)
χ3380(1363,⋅)
χ3380(1367,⋅)
χ3380(1463,⋅)
χ3380(1527,⋅)
χ3380(1623,⋅)
χ3380(1627,⋅)
χ3380(1723,⋅)
χ3380(1787,⋅)
χ3380(1883,⋅)
χ3380(1887,⋅)
χ3380(1983,⋅)
χ3380(2143,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1691,677,1861) → (−1,i,e(156121))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 17 | 19 | 21 | 23 | 27 | 29 |
χ3380(1627,a) |
−1 | 1 | e(15667) | e(3929) | e(7867) | e(15661) | e(15677) | e(125) | e(529) | e(121) | e(5215) | e(7841) |