L(s) = 1 | + (0.534 − 0.845i)2-s + (−0.428 − 0.903i)4-s + (−0.919 − 0.391i)5-s + (−0.992 − 0.120i)8-s + (−0.999 − 0.0402i)9-s + (−0.822 + 0.568i)10-s + (−0.799 + 0.600i)13-s + (−0.632 + 0.774i)16-s + (0.0943 + 0.664i)17-s + (−0.568 + 0.822i)18-s + (0.0402 + 0.999i)20-s + (0.692 + 0.721i)25-s + (0.0804 + 0.996i)26-s + (−0.297 + 0.470i)29-s + (0.316 + 0.948i)32-s + ⋯ |
L(s) = 1 | + (0.534 − 0.845i)2-s + (−0.428 − 0.903i)4-s + (−0.919 − 0.391i)5-s + (−0.992 − 0.120i)8-s + (−0.999 − 0.0402i)9-s + (−0.822 + 0.568i)10-s + (−0.799 + 0.600i)13-s + (−0.632 + 0.774i)16-s + (0.0943 + 0.664i)17-s + (−0.568 + 0.822i)18-s + (0.0402 + 0.999i)20-s + (0.692 + 0.721i)25-s + (0.0804 + 0.996i)26-s + (−0.297 + 0.470i)29-s + (0.316 + 0.948i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.405 - 0.914i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.405 - 0.914i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2757685288\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2757685288\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.534 + 0.845i)T \) |
| 5 | \( 1 + (0.919 + 0.391i)T \) |
| 13 | \( 1 + (0.799 - 0.600i)T \) |
good | 3 | \( 1 + (0.999 + 0.0402i)T^{2} \) |
| 7 | \( 1 + (-0.278 - 0.960i)T^{2} \) |
| 11 | \( 1 + (0.0804 + 0.996i)T^{2} \) |
| 17 | \( 1 + (-0.0943 - 0.664i)T + (-0.960 + 0.278i)T^{2} \) |
| 19 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + (0.297 - 0.470i)T + (-0.428 - 0.903i)T^{2} \) |
| 31 | \( 1 + (0.992 + 0.120i)T^{2} \) |
| 37 | \( 1 + (0.304 + 0.101i)T + (0.799 + 0.600i)T^{2} \) |
| 41 | \( 1 + (-0.439 - 0.00884i)T + (0.999 + 0.0402i)T^{2} \) |
| 43 | \( 1 + (0.600 + 0.799i)T^{2} \) |
| 47 | \( 1 + (0.354 - 0.935i)T^{2} \) |
| 53 | \( 1 + (1.55 - 1.22i)T + (0.239 - 0.970i)T^{2} \) |
| 59 | \( 1 + (-0.979 - 0.200i)T^{2} \) |
| 61 | \( 1 + (1.32 + 0.565i)T + (0.692 + 0.721i)T^{2} \) |
| 67 | \( 1 + (-0.632 - 0.774i)T^{2} \) |
| 71 | \( 1 + (0.534 - 0.845i)T^{2} \) |
| 73 | \( 1 + (-0.464 + 0.885i)T + (-0.568 - 0.822i)T^{2} \) |
| 79 | \( 1 + (-0.354 + 0.935i)T^{2} \) |
| 83 | \( 1 + (-0.885 - 0.464i)T^{2} \) |
| 89 | \( 1 + (1.76 + 0.472i)T + (0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 + (0.212 - 1.30i)T + (-0.948 - 0.316i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.114351585691209625562781983198, −8.299078555589038374759757508558, −7.55524780836600664312530674609, −6.52591888500822064057927379423, −5.71752768995417369536250245546, −4.90495805437735642310361038498, −4.26092824489324639468597860051, −3.40897122655715972357018525892, −2.63647607182236538811008897938, −1.44588185845495715952274669371,
0.13446769328246180923009382043, 2.59540721424033198790809179145, 3.17812570525755094307484765428, 4.06920342430244478917576531504, 4.96703567747096738116153353402, 5.56598451563630862858377103811, 6.48855944822224781540284585039, 7.18154108047006003339616111638, 7.86227291349928958228087574631, 8.317601498047720360939864515232