L(s) = 1 | + (0.534 − 0.845i)2-s + (−0.428 − 0.903i)4-s + (−0.919 − 0.391i)5-s + (−0.992 − 0.120i)8-s + (−0.999 − 0.0402i)9-s + (−0.822 + 0.568i)10-s + (−0.799 + 0.600i)13-s + (−0.632 + 0.774i)16-s + (0.0943 + 0.664i)17-s + (−0.568 + 0.822i)18-s + (0.0402 + 0.999i)20-s + (0.692 + 0.721i)25-s + (0.0804 + 0.996i)26-s + (−0.297 + 0.470i)29-s + (0.316 + 0.948i)32-s + ⋯ |
L(s) = 1 | + (0.534 − 0.845i)2-s + (−0.428 − 0.903i)4-s + (−0.919 − 0.391i)5-s + (−0.992 − 0.120i)8-s + (−0.999 − 0.0402i)9-s + (−0.822 + 0.568i)10-s + (−0.799 + 0.600i)13-s + (−0.632 + 0.774i)16-s + (0.0943 + 0.664i)17-s + (−0.568 + 0.822i)18-s + (0.0402 + 0.999i)20-s + (0.692 + 0.721i)25-s + (0.0804 + 0.996i)26-s + (−0.297 + 0.470i)29-s + (0.316 + 0.948i)32-s + ⋯ |
Λ(s)=(=(3380s/2ΓC(s)L(s)(0.405−0.914i)Λ(1−s)
Λ(s)=(=(3380s/2ΓC(s)L(s)(0.405−0.914i)Λ(1−s)
Degree: |
2 |
Conductor: |
3380
= 22⋅5⋅132
|
Sign: |
0.405−0.914i
|
Analytic conductor: |
1.68683 |
Root analytic conductor: |
1.29878 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3380(1783,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3380, ( :0), 0.405−0.914i)
|
Particular Values
L(21) |
≈ |
0.2757685288 |
L(21) |
≈ |
0.2757685288 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.534+0.845i)T |
| 5 | 1+(0.919+0.391i)T |
| 13 | 1+(0.799−0.600i)T |
good | 3 | 1+(0.999+0.0402i)T2 |
| 7 | 1+(−0.278−0.960i)T2 |
| 11 | 1+(0.0804+0.996i)T2 |
| 17 | 1+(−0.0943−0.664i)T+(−0.960+0.278i)T2 |
| 19 | 1+(−0.866+0.5i)T2 |
| 23 | 1+(−0.866−0.5i)T2 |
| 29 | 1+(0.297−0.470i)T+(−0.428−0.903i)T2 |
| 31 | 1+(0.992+0.120i)T2 |
| 37 | 1+(0.304+0.101i)T+(0.799+0.600i)T2 |
| 41 | 1+(−0.439−0.00884i)T+(0.999+0.0402i)T2 |
| 43 | 1+(0.600+0.799i)T2 |
| 47 | 1+(0.354−0.935i)T2 |
| 53 | 1+(1.55−1.22i)T+(0.239−0.970i)T2 |
| 59 | 1+(−0.979−0.200i)T2 |
| 61 | 1+(1.32+0.565i)T+(0.692+0.721i)T2 |
| 67 | 1+(−0.632−0.774i)T2 |
| 71 | 1+(0.534−0.845i)T2 |
| 73 | 1+(−0.464+0.885i)T+(−0.568−0.822i)T2 |
| 79 | 1+(−0.354+0.935i)T2 |
| 83 | 1+(−0.885−0.464i)T2 |
| 89 | 1+(1.76+0.472i)T+(0.866+0.5i)T2 |
| 97 | 1+(0.212−1.30i)T+(−0.948−0.316i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.114351585691209625562781983198, −8.299078555589038374759757508558, −7.55524780836600664312530674609, −6.52591888500822064057927379423, −5.71752768995417369536250245546, −4.90495805437735642310361038498, −4.26092824489324639468597860051, −3.40897122655715972357018525892, −2.63647607182236538811008897938, −1.44588185845495715952274669371,
0.13446769328246180923009382043, 2.59540721424033198790809179145, 3.17812570525755094307484765428, 4.06920342430244478917576531504, 4.96703567747096738116153353402, 5.56598451563630862858377103811, 6.48855944822224781540284585039, 7.18154108047006003339616111638, 7.86227291349928958228087574631, 8.317601498047720360939864515232