Properties

Label 3380.1.cs.a.1783.1
Level $3380$
Weight $1$
Character 3380.1783
Analytic conductor $1.687$
Analytic rank $0$
Dimension $48$
Projective image $D_{156}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3380,1,Mod(7,3380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3380, base_ring=CyclotomicField(156))
 
chi = DirichletCharacter(H, H._module([78, 39, 107]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3380.7");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3380 = 2^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3380.cs (of order \(156\), degree \(48\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.68683974270\)
Analytic rank: \(0\)
Dimension: \(48\)
Coefficient field: \(\Q(\zeta_{156})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{48} + x^{46} - x^{42} - x^{40} + x^{36} + x^{34} - x^{30} - x^{28} + x^{24} - x^{20} - x^{18} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{156}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{156} - \cdots)\)

Embedding invariants

Embedding label 1783.1
Root \(-0.960518 - 0.278217i\) of defining polynomial
Character \(\chi\) \(=\) 3380.1783
Dual form 3380.1.cs.a.527.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.534466 - 0.845190i) q^{2} +(-0.428693 - 0.903450i) q^{4} +(-0.919979 - 0.391967i) q^{5} +(-0.992709 - 0.120537i) q^{8} +(-0.999189 - 0.0402659i) q^{9} +(-0.822984 + 0.568065i) q^{10} +(-0.799443 + 0.600742i) q^{13} +(-0.632445 + 0.774605i) q^{16} +(0.0943346 + 0.664749i) q^{17} +(-0.568065 + 0.822984i) q^{18} +(0.0402659 + 0.999189i) q^{20} +(0.692724 + 0.721202i) q^{25} +(0.0804666 + 0.996757i) q^{26} +(-0.297395 + 0.470293i) q^{29} +(0.316668 + 0.948536i) q^{32} +(0.612258 + 0.275555i) q^{34} +(0.391967 + 0.919979i) q^{36} +(-0.304312 - 0.101594i) q^{37} +(0.866025 + 0.500000i) q^{40} +(0.439341 + 0.00884883i) q^{41} +(0.903450 + 0.428693i) q^{45} +(0.278217 + 0.960518i) q^{49} +(0.979791 - 0.200026i) q^{50} +(0.885456 + 0.464723i) q^{52} +(-1.55875 + 1.22120i) q^{53} +(0.238540 + 0.502711i) q^{58} +(-1.32698 - 0.565375i) q^{61} +(0.970942 + 0.239316i) q^{64} +(0.970942 - 0.239316i) q^{65} +(0.560127 - 0.370200i) q^{68} +(0.987050 + 0.160411i) q^{72} +(0.464723 - 0.885456i) q^{73} +(-0.248511 + 0.202903i) q^{74} +(0.885456 - 0.464723i) q^{80} +(0.996757 + 0.0804666i) q^{81} +(0.242292 - 0.366598i) q^{82} +(0.173773 - 0.648531i) q^{85} +(-1.76166 - 0.472034i) q^{89} +(0.845190 - 0.534466i) q^{90} +(-0.212745 + 1.30907i) q^{97} +(0.960518 + 0.278217i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} + 2 q^{5} - 2 q^{13} + 2 q^{16} + 4 q^{17} + 4 q^{18} - 2 q^{20} + 2 q^{25} + 2 q^{34} - 2 q^{41} + 2 q^{49} - 4 q^{52} - 2 q^{53} - 2 q^{58} + 4 q^{64} + 4 q^{65} + 2 q^{68} + 2 q^{72} + 20 q^{74}+ \cdots - 2 q^{90}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3380\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1691\) \(1861\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{145}{156}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.534466 0.845190i 0.534466 0.845190i
\(3\) 0 0 0.0201371 0.999797i \(-0.493590\pi\)
−0.0201371 + 0.999797i \(0.506410\pi\)
\(4\) −0.428693 0.903450i −0.428693 0.903450i
\(5\) −0.919979 0.391967i −0.919979 0.391967i
\(6\) 0 0
\(7\) 0 0 −0.799443 0.600742i \(-0.794872\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(8\) −0.992709 0.120537i −0.992709 0.120537i
\(9\) −0.999189 0.0402659i −0.999189 0.0402659i
\(10\) −0.822984 + 0.568065i −0.822984 + 0.568065i
\(11\) 0 0 0.678061 0.735006i \(-0.262821\pi\)
−0.678061 + 0.735006i \(0.737179\pi\)
\(12\) 0 0
\(13\) −0.799443 + 0.600742i −0.799443 + 0.600742i
\(14\) 0 0
\(15\) 0 0
\(16\) −0.632445 + 0.774605i −0.632445 + 0.774605i
\(17\) 0.0943346 + 0.664749i 0.0943346 + 0.664749i 0.979791 + 0.200026i \(0.0641026\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(18\) −0.568065 + 0.822984i −0.568065 + 0.822984i
\(19\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(20\) 0.0402659 + 0.999189i 0.0402659 + 0.999189i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(24\) 0 0
\(25\) 0.692724 + 0.721202i 0.692724 + 0.721202i
\(26\) 0.0804666 + 0.996757i 0.0804666 + 0.996757i
\(27\) 0 0
\(28\) 0 0
\(29\) −0.297395 + 0.470293i −0.297395 + 0.470293i −0.960518 0.278217i \(-0.910256\pi\)
0.663123 + 0.748511i \(0.269231\pi\)
\(30\) 0 0
\(31\) 0 0 0.0603785 0.998176i \(-0.480769\pi\)
−0.0603785 + 0.998176i \(0.519231\pi\)
\(32\) 0.316668 + 0.948536i 0.316668 + 0.948536i
\(33\) 0 0
\(34\) 0.612258 + 0.275555i 0.612258 + 0.275555i
\(35\) 0 0
\(36\) 0.391967 + 0.919979i 0.391967 + 0.919979i
\(37\) −0.304312 0.101594i −0.304312 0.101594i 0.160411 0.987050i \(-0.448718\pi\)
−0.464723 + 0.885456i \(0.653846\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(41\) 0.439341 + 0.00884883i 0.439341 + 0.00884883i 0.239316 0.970942i \(-0.423077\pi\)
0.200026 + 0.979791i \(0.435897\pi\)
\(42\) 0 0
\(43\) 0 0 0.446798 0.894635i \(-0.352564\pi\)
−0.446798 + 0.894635i \(0.647436\pi\)
\(44\) 0 0
\(45\) 0.903450 + 0.428693i 0.903450 + 0.428693i
\(46\) 0 0
\(47\) 0 0 −0.568065 0.822984i \(-0.692308\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(48\) 0 0
\(49\) 0.278217 + 0.960518i 0.278217 + 0.960518i
\(50\) 0.979791 0.200026i 0.979791 0.200026i
\(51\) 0 0
\(52\) 0.885456 + 0.464723i 0.885456 + 0.464723i
\(53\) −1.55875 + 1.22120i −1.55875 + 1.22120i −0.692724 + 0.721202i \(0.743590\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0.238540 + 0.502711i 0.238540 + 0.502711i
\(59\) 0 0 −0.994935 0.100522i \(-0.967949\pi\)
0.994935 + 0.100522i \(0.0320513\pi\)
\(60\) 0 0
\(61\) −1.32698 0.565375i −1.32698 0.565375i −0.391967 0.919979i \(-0.628205\pi\)
−0.935016 + 0.354605i \(0.884615\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.970942 + 0.239316i 0.970942 + 0.239316i
\(65\) 0.970942 0.239316i 0.970942 0.239316i
\(66\) 0 0
\(67\) 0 0 −0.903450 0.428693i \(-0.858974\pi\)
0.903450 + 0.428693i \(0.141026\pi\)
\(68\) 0.560127 0.370200i 0.560127 0.370200i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.482459 0.875918i \(-0.660256\pi\)
0.482459 + 0.875918i \(0.339744\pi\)
\(72\) 0.987050 + 0.160411i 0.987050 + 0.160411i
\(73\) 0.464723 0.885456i 0.464723 0.885456i −0.534466 0.845190i \(-0.679487\pi\)
0.999189 0.0402659i \(-0.0128205\pi\)
\(74\) −0.248511 + 0.202903i −0.248511 + 0.202903i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.822984 0.568065i \(-0.192308\pi\)
−0.822984 + 0.568065i \(0.807692\pi\)
\(80\) 0.885456 0.464723i 0.885456 0.464723i
\(81\) 0.996757 + 0.0804666i 0.996757 + 0.0804666i
\(82\) 0.242292 0.366598i 0.242292 0.366598i
\(83\) 0 0 −0.970942 0.239316i \(-0.923077\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(84\) 0 0
\(85\) 0.173773 0.648531i 0.173773 0.648531i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.76166 0.472034i −1.76166 0.472034i −0.774605 0.632445i \(-0.782051\pi\)
−0.987050 + 0.160411i \(0.948718\pi\)
\(90\) 0.845190 0.534466i 0.845190 0.534466i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −0.212745 + 1.30907i −0.212745 + 1.30907i 0.632445 + 0.774605i \(0.282051\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(98\) 0.960518 + 0.278217i 0.960518 + 0.278217i
\(99\) 0 0
\(100\) 0.354605 0.935016i 0.354605 0.935016i
\(101\) −0.620537 0.126683i −0.620537 0.126683i −0.120537 0.992709i \(-0.538462\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) 0 0 0.517338 0.855781i \(-0.326923\pi\)
−0.517338 + 0.855781i \(0.673077\pi\)
\(104\) 0.866025 0.500000i 0.866025 0.500000i
\(105\) 0 0
\(106\) 0.199050 + 1.97013i 0.199050 + 1.97013i
\(107\) 0 0 0.584522 0.811378i \(-0.301282\pi\)
−0.584522 + 0.811378i \(0.698718\pi\)
\(108\) 0 0
\(109\) 0.0217671 + 0.359852i 0.0217671 + 0.359852i 0.992709 + 0.120537i \(0.0384615\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.98947 + 0.0400701i −1.98947 + 0.0400701i −0.996757 0.0804666i \(-0.974359\pi\)
−0.992709 + 0.120537i \(0.961538\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.552378 + 0.0670708i 0.552378 + 0.0670708i
\(117\) 0.822984 0.568065i 0.822984 0.568065i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.0804666 0.996757i −0.0804666 0.996757i
\(122\) −1.18708 + 0.819379i −1.18708 + 0.819379i
\(123\) 0 0
\(124\) 0 0
\(125\) −0.354605 0.935016i −0.354605 0.935016i
\(126\) 0 0
\(127\) 0 0 0.941967 0.335705i \(-0.108974\pi\)
−0.941967 + 0.335705i \(0.891026\pi\)
\(128\) 0.721202 0.692724i 0.721202 0.692724i
\(129\) 0 0
\(130\) 0.316668 0.948536i 0.316668 0.948536i
\(131\) 0 0 0.885456 0.464723i \(-0.153846\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −0.0135202 0.671273i −0.0135202 0.671273i
\(137\) −1.19979 + 0.400550i −1.19979 + 0.400550i −0.845190 0.534466i \(-0.820513\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(138\) 0 0
\(139\) 0 0 0.160411 0.987050i \(-0.448718\pi\)
−0.160411 + 0.987050i \(0.551282\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.663123 0.748511i 0.663123 0.748511i
\(145\) 0.457937 0.316091i 0.457937 0.316091i
\(146\) −0.500000 0.866025i −0.500000 0.866025i
\(147\) 0 0
\(148\) 0.0386709 + 0.318483i 0.0386709 + 0.318483i
\(149\) 0.839981 + 0.714491i 0.839981 + 0.714491i 0.960518 0.278217i \(-0.0897436\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(150\) 0 0
\(151\) 0 0 0.983620 0.180255i \(-0.0576923\pi\)
−0.983620 + 0.180255i \(0.942308\pi\)
\(152\) 0 0
\(153\) −0.0674914 0.668008i −0.0674914 0.668008i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.684779 + 1.52152i 0.684779 + 1.52152i 0.845190 + 0.534466i \(0.179487\pi\)
−0.160411 + 0.987050i \(0.551282\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0.0804666 0.996757i 0.0804666 0.996757i
\(161\) 0 0
\(162\) 0.600742 0.799443i 0.600742 0.799443i
\(163\) 0 0 0.979791 0.200026i \(-0.0641026\pi\)
−0.979791 + 0.200026i \(0.935897\pi\)
\(164\) −0.180348 0.400717i −0.180348 0.400717i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.845190 0.534466i \(-0.820513\pi\)
0.845190 + 0.534466i \(0.179487\pi\)
\(168\) 0 0
\(169\) 0.278217 0.960518i 0.278217 0.960518i
\(170\) −0.455256 0.493489i −0.455256 0.493489i
\(171\) 0 0
\(172\) 0 0
\(173\) −0.974631 0.347345i −0.974631 0.347345i −0.200026 0.979791i \(-0.564103\pi\)
−0.774605 + 0.632445i \(0.782051\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −1.34050 + 1.23665i −1.34050 + 1.23665i
\(179\) 0 0 0.799443 0.600742i \(-0.205128\pi\)
−0.799443 + 0.600742i \(0.794872\pi\)
\(180\) 1.00000i 1.00000i
\(181\) −1.72039 0.652458i −1.72039 0.652458i −0.721202 0.692724i \(-0.756410\pi\)
−0.999189 + 0.0402659i \(0.987179\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.240139 + 0.212745i 0.240139 + 0.212745i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0 0
\(193\) 1.17720 + 1.56657i 1.17720 + 1.56657i 0.748511 + 0.663123i \(0.230769\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(194\) 0.992709 + 0.879463i 0.992709 + 0.879463i
\(195\) 0 0
\(196\) 0.748511 0.663123i 0.748511 0.663123i
\(197\) −0.468959 0.0957386i −0.468959 0.0957386i −0.0402659 0.999189i \(-0.512821\pi\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(198\) 0 0
\(199\) 0 0 −0.987050 0.160411i \(-0.948718\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(200\) −0.600742 0.799443i −0.600742 0.799443i
\(201\) 0 0
\(202\) −0.438727 + 0.456763i −0.438727 + 0.456763i
\(203\) 0 0
\(204\) 0 0
\(205\) −0.400717 0.180348i −0.400717 0.180348i
\(206\) 0 0
\(207\) 0 0
\(208\) 0.0402659 0.999189i 0.0402659 0.999189i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.428693 0.903450i \(-0.358974\pi\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(212\) 1.77152 + 0.884733i 1.77152 + 0.884733i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0.315777 + 0.173931i 0.315777 + 0.173931i
\(219\) 0 0
\(220\) 0 0
\(221\) −0.474758 0.474758i −0.474758 0.474758i
\(222\) 0 0
\(223\) 0 0 0.987050 0.160411i \(-0.0512821\pi\)
−0.987050 + 0.160411i \(0.948718\pi\)
\(224\) 0 0
\(225\) −0.663123 0.748511i −0.663123 0.748511i
\(226\) −1.02943 + 1.70289i −1.02943 + 1.70289i
\(227\) 0 0 0.903450 0.428693i \(-0.141026\pi\)
−0.903450 + 0.428693i \(0.858974\pi\)
\(228\) 0 0
\(229\) 1.57149 0.0950579i 1.57149 0.0950579i 0.748511 0.663123i \(-0.230769\pi\)
0.822984 + 0.568065i \(0.192308\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.351915 0.431017i 0.351915 0.431017i
\(233\) 0.103342 0.0624722i 0.103342 0.0624722i −0.464723 0.885456i \(-0.653846\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(234\) −0.0402659 0.999189i −0.0402659 0.999189i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(240\) 0 0
\(241\) −1.16881 1.62243i −1.16881 1.62243i −0.600742 0.799443i \(-0.705128\pi\)
−0.568065 0.822984i \(-0.692308\pi\)
\(242\) −0.885456 0.464723i −0.885456 0.464723i
\(243\) 0 0
\(244\) 0.0580798 + 1.44124i 0.0580798 + 1.44124i
\(245\) 0.120537 0.992709i 0.120537 0.992709i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −0.979791 0.200026i −0.979791 0.200026i
\(251\) 0 0 0.979791 0.200026i \(-0.0641026\pi\)
−0.979791 + 0.200026i \(0.935897\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.200026 0.979791i −0.200026 0.979791i
\(257\) −0.483813 0.568788i −0.483813 0.568788i 0.464723 0.885456i \(-0.346154\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −0.632445 0.774605i −0.632445 0.774605i
\(261\) 0.316091 0.457937i 0.316091 0.457937i
\(262\) 0 0
\(263\) 0 0 0.678061 0.735006i \(-0.262821\pi\)
−0.678061 + 0.735006i \(0.737179\pi\)
\(264\) 0 0
\(265\) 1.91269 0.512503i 1.91269 0.512503i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.79620 0.520276i −1.79620 0.520276i −0.799443 0.600742i \(-0.794872\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(270\) 0 0
\(271\) 0 0 0.941967 0.335705i \(-0.108974\pi\)
−0.941967 + 0.335705i \(0.891026\pi\)
\(272\) −0.574579 0.347345i −0.574579 0.347345i
\(273\) 0 0
\(274\) −0.302708 + 1.22814i −0.302708 + 1.22814i
\(275\) 0 0
\(276\) 0 0
\(277\) 0.721279 + 1.79215i 0.721279 + 1.79215i 0.600742 + 0.799443i \(0.294872\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.240479 + 0.145374i 0.240479 + 0.145374i 0.632445 0.774605i \(-0.282051\pi\)
−0.391967 + 0.919979i \(0.628205\pi\)
\(282\) 0 0
\(283\) 0 0 0.894635 0.446798i \(-0.147436\pi\)
−0.894635 + 0.446798i \(0.852564\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.278217 0.960518i −0.278217 0.960518i
\(289\) 0.527526 0.152800i 0.527526 0.152800i
\(290\) −0.0224054 0.555984i −0.0224054 0.555984i
\(291\) 0 0
\(292\) −0.999189 0.0402659i −0.999189 0.0402659i
\(293\) 0.743589 1.74527i 0.743589 1.74527i 0.0804666 0.996757i \(-0.474359\pi\)
0.663123 0.748511i \(-0.269231\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.289847 + 0.137534i 0.289847 + 0.137534i
\(297\) 0 0
\(298\) 1.05282 0.328073i 1.05282 0.328073i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.999189 + 1.04027i 0.999189 + 1.04027i
\(306\) −0.600666 0.299985i −0.600666 0.299985i
\(307\) 0 0 0.748511 0.663123i \(-0.230769\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.663123 0.748511i \(-0.730769\pi\)
0.663123 + 0.748511i \(0.269231\pi\)
\(312\) 0 0
\(313\) 0.115289 + 1.90596i 0.115289 + 1.90596i 0.354605 + 0.935016i \(0.384615\pi\)
−0.239316 + 0.970942i \(0.576923\pi\)
\(314\) 1.65196 + 0.234430i 1.65196 + 0.234430i
\(315\) 0 0
\(316\) 0 0
\(317\) −1.58723 + 0.192724i −1.58723 + 0.192724i −0.866025 0.500000i \(-0.833333\pi\)
−0.721202 + 0.692724i \(0.756410\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.799443 0.600742i −0.799443 0.600742i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.354605 0.935016i −0.354605 0.935016i
\(325\) −0.987050 0.160411i −0.987050 0.160411i
\(326\) 0 0
\(327\) 0 0
\(328\) −0.435071 0.0617411i −0.435071 0.0617411i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.990080 0.140502i \(-0.0448718\pi\)
−0.990080 + 0.140502i \(0.955128\pi\)
\(332\) 0 0
\(333\) 0.299974 + 0.113765i 0.299974 + 0.113765i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.631868 + 0.631868i 0.631868 + 0.631868i 0.948536 0.316668i \(-0.102564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(338\) −0.663123 0.748511i −0.663123 0.748511i
\(339\) 0 0
\(340\) −0.660411 + 0.121025i −0.660411 + 0.121025i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −0.814480 + 0.638104i −0.814480 + 0.638104i
\(347\) 0 0 −0.678061 0.735006i \(-0.737179\pi\)
0.678061 + 0.735006i \(0.262821\pi\)
\(348\) 0 0
\(349\) −0.603311 0.556570i −0.603311 0.556570i 0.316668 0.948536i \(-0.397436\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.721202 0.307276i 0.721202 0.307276i 1.00000i \(-0.5\pi\)
0.721202 + 0.692724i \(0.243590\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0.328749 + 1.79393i 0.328749 + 1.79393i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.787183 0.616719i \(-0.788462\pi\)
0.787183 + 0.616719i \(0.211538\pi\)
\(360\) −0.845190 0.534466i −0.845190 0.534466i
\(361\) 0.866025 0.500000i 0.866025 0.500000i
\(362\) −1.47094 + 1.10534i −1.47094 + 1.10534i
\(363\) 0 0
\(364\) 0 0
\(365\) −0.774605 + 0.632445i −0.774605 + 0.632445i
\(366\) 0 0
\(367\) 0 0 0.975564 0.219715i \(-0.0705128\pi\)
−0.975564 + 0.219715i \(0.929487\pi\)
\(368\) 0 0
\(369\) −0.438629 0.0265322i −0.438629 0.0265322i
\(370\) 0.308156 0.0892584i 0.308156 0.0892584i
\(371\) 0 0
\(372\) 0 0
\(373\) −1.90345 0.428693i −1.90345 0.428693i −0.903450 0.428693i \(-0.858974\pi\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.0447744 0.554631i −0.0447744 0.554631i
\(378\) 0 0
\(379\) 0 0 0.0201371 0.999797i \(-0.493590\pi\)
−0.0201371 + 0.999797i \(0.506410\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.919979 0.391967i \(-0.871795\pi\)
0.919979 + 0.391967i \(0.128205\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.95323 0.157681i 1.95323 0.157681i
\(387\) 0 0
\(388\) 1.27388 0.368985i 1.27388 0.368985i
\(389\) −0.237952 1.95971i −0.237952 1.95971i −0.278217 0.960518i \(-0.589744\pi\)
0.0402659 0.999189i \(-0.487179\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.160411 0.987050i −0.160411 0.987050i
\(393\) 0 0
\(394\) −0.331560 + 0.345190i −0.331560 + 0.345190i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.587824 0.719954i −0.587824 0.719954i 0.391967 0.919979i \(-0.371795\pi\)
−0.979791 + 0.200026i \(0.935897\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.996757 + 0.0804666i −0.996757 + 0.0804666i
\(401\) 1.78021 0.179861i 1.78021 0.179861i 0.845190 0.534466i \(-0.179487\pi\)
0.935016 + 0.354605i \(0.115385\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0.151567 + 0.614932i 0.151567 + 0.614932i
\(405\) −0.885456 0.464723i −0.885456 0.464723i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −0.453409 + 0.249739i −0.453409 + 0.249739i −0.692724 0.721202i \(-0.743590\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(410\) −0.366598 + 0.242292i −0.366598 + 0.242292i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −0.822984 0.568065i −0.822984 0.568065i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.0804666 0.996757i \(-0.474359\pi\)
−0.0804666 + 0.996757i \(0.525641\pi\)
\(420\) 0 0
\(421\) 0.0344658 0.0208353i 0.0344658 0.0208353i −0.500000 0.866025i \(-0.666667\pi\)
0.534466 + 0.845190i \(0.320513\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 1.69458 1.02441i 1.69458 1.02441i
\(425\) −0.414071 + 0.528522i −0.414071 + 0.528522i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.761712 0.647915i \(-0.224359\pi\)
−0.761712 + 0.647915i \(0.775641\pi\)
\(432\) 0 0
\(433\) −1.16312 0.117515i −1.16312 0.117515i −0.500000 0.866025i \(-0.666667\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.315777 0.173931i 0.315777 0.173931i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.200026 0.979791i \(-0.435897\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(440\) 0 0
\(441\) −0.239316 0.970942i −0.239316 0.970942i
\(442\) −0.655003 + 0.147519i −0.655003 + 0.147519i
\(443\) 0 0 −0.517338 0.855781i \(-0.673077\pi\)
0.517338 + 0.855781i \(0.326923\pi\)
\(444\) 0 0
\(445\) 1.43566 + 1.12477i 1.43566 + 1.12477i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.560476 + 0.199746i 0.560476 + 0.199746i 0.600742 0.799443i \(-0.294872\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(450\) −0.987050 + 0.160411i −0.987050 + 0.160411i
\(451\) 0 0
\(452\) 0.889071 + 1.78021i 0.889071 + 1.78021i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.15405 0.334274i 1.15405 0.334274i 0.354605 0.935016i \(-0.384615\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(458\) 0.759568 1.37902i 0.759568 1.37902i
\(459\) 0 0
\(460\) 0 0
\(461\) 0.136320 + 0.147768i 0.136320 + 0.147768i 0.799443 0.600742i \(-0.205128\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(462\) 0 0
\(463\) 0 0 −0.464723 0.885456i \(-0.653846\pi\)
0.464723 + 0.885456i \(0.346154\pi\)
\(464\) −0.176205 0.527799i −0.176205 0.527799i
\(465\) 0 0
\(466\) 0.00243169 0.120733i 0.00243169 0.120733i
\(467\) 0 0 −0.297503 0.954721i \(-0.596154\pi\)
0.297503 + 0.954721i \(0.403846\pi\)
\(468\) −0.866025 0.500000i −0.866025 0.500000i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.60666 1.15745i 1.60666 1.15745i
\(478\) 0 0
\(479\) 0 0 −0.551377 0.834256i \(-0.685897\pi\)
0.551377 + 0.834256i \(0.314103\pi\)
\(480\) 0 0
\(481\) 0.304312 0.101594i 0.304312 0.101594i
\(482\) −1.99595 + 0.120733i −1.99595 + 0.120733i
\(483\) 0 0
\(484\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(485\) 0.708833 1.12093i 0.708833 1.12093i
\(486\) 0 0
\(487\) 0 0 −0.0804666 0.996757i \(-0.525641\pi\)
0.0804666 + 0.996757i \(0.474359\pi\)
\(488\) 1.24916 + 0.721202i 1.24916 + 0.721202i
\(489\) 0 0
\(490\) −0.774605 0.632445i −0.774605 0.632445i
\(491\) 0 0 −0.774605 0.632445i \(-0.782051\pi\)
0.774605 + 0.632445i \(0.217949\pi\)
\(492\) 0 0
\(493\) −0.340682 0.153328i −0.340682 0.153328i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 0.787183 0.616719i \(-0.211538\pi\)
−0.787183 + 0.616719i \(0.788462\pi\)
\(500\) −0.692724 + 0.721202i −0.692724 + 0.721202i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.335705 0.941967i \(-0.391026\pi\)
−0.335705 + 0.941967i \(0.608974\pi\)
\(504\) 0 0
\(505\) 0.521225 + 0.359776i 0.521225 + 0.359776i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.212007 + 0.941340i 0.212007 + 0.941340i 0.960518 + 0.278217i \(0.0897436\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.935016 0.354605i −0.935016 0.354605i
\(513\) 0 0
\(514\) −0.739316 + 0.104916i −0.739316 + 0.104916i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −0.992709 + 0.120537i −0.992709 + 0.120537i
\(521\) −0.379048 0.999468i −0.379048 0.999468i −0.979791 0.200026i \(-0.935897\pi\)
0.600742 0.799443i \(-0.294872\pi\)
\(522\) −0.218104 0.511909i −0.218104 0.511909i
\(523\) 0 0 0.994935 0.100522i \(-0.0320513\pi\)
−0.994935 + 0.100522i \(0.967949\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(530\) 0.589104 1.89050i 0.589104 1.89050i
\(531\) 0 0
\(532\) 0 0
\(533\) −0.356544 + 0.256857i −0.356544 + 0.256857i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −1.39974 + 1.24006i −1.39974 + 1.24006i
\(539\) 0 0
\(540\) 0 0
\(541\) 0.761468 1.69191i 0.761468 1.69191i 0.0402659 0.999189i \(-0.487179\pi\)
0.721202 0.692724i \(-0.243590\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.600666 + 0.299985i −0.600666 + 0.299985i
\(545\) 0.121025 0.339589i 0.121025 0.339589i
\(546\) 0 0
\(547\) 0 0 0.954721 0.297503i \(-0.0961538\pi\)
−0.954721 + 0.297503i \(0.903846\pi\)
\(548\) 0.876221 + 0.912242i 0.876221 + 0.912242i
\(549\) 1.30314 + 0.618348i 1.30314 + 0.618348i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 1.90021 + 0.348226i 1.90021 + 0.348226i
\(555\) 0 0
\(556\) 0 0
\(557\) 0.481887 + 1.66367i 0.481887 + 1.66367i 0.721202 + 0.692724i \(0.243590\pi\)
−0.239316 + 0.970942i \(0.576923\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0.251397 0.125553i 0.251397 0.125553i
\(563\) 0 0 −0.0201371 0.999797i \(-0.506410\pi\)
0.0201371 + 0.999797i \(0.493590\pi\)
\(564\) 0 0
\(565\) 1.84597 + 0.742941i 1.84597 + 0.742941i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.62465 + 0.264032i −1.62465 + 0.264032i −0.903450 0.428693i \(-0.858974\pi\)
−0.721202 + 0.692724i \(0.756410\pi\)
\(570\) 0 0
\(571\) 0 0 0.239316 0.970942i \(-0.423077\pi\)
−0.239316 + 0.970942i \(0.576923\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.960518 0.278217i −0.960518 0.278217i
\(577\) 1.99351i 1.99351i 0.0804666 + 0.996757i \(0.474359\pi\)
−0.0804666 + 0.996757i \(0.525641\pi\)
\(578\) 0.152800 0.527526i 0.152800 0.527526i
\(579\) 0 0
\(580\) −0.481887 0.278217i −0.481887 0.278217i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −0.568065 + 0.822984i −0.568065 + 0.822984i
\(585\) −0.979791 + 0.200026i −0.979791 + 0.200026i
\(586\) −1.07766 1.56126i −1.07766 1.56126i
\(587\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0.271156 0.171469i 0.271156 0.171469i
\(593\) 0.0385138 0.156257i 0.0385138 0.156257i −0.948536 0.316668i \(-0.897436\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.285414 1.06518i 0.285414 1.06518i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.822984 0.568065i \(-0.807692\pi\)
0.822984 + 0.568065i \(0.192308\pi\)
\(600\) 0 0
\(601\) −0.0557864 1.38433i −0.0557864 1.38433i −0.748511 0.663123i \(-0.769231\pi\)
0.692724 0.721202i \(-0.256410\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.316668 + 0.948536i −0.316668 + 0.948536i
\(606\) 0 0
\(607\) 0 0 −0.482459 0.875918i \(-0.660256\pi\)
0.482459 + 0.875918i \(0.339744\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 1.41325 0.288518i 1.41325 0.288518i
\(611\) 0 0
\(612\) −0.574579 + 0.347345i −0.574579 + 0.347345i
\(613\) −0.876221 + 1.07318i −0.876221 + 1.07318i 0.120537 + 0.992709i \(0.461538\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.48804 1.21495i 1.48804 1.21495i 0.568065 0.822984i \(-0.307692\pi\)
0.919979 0.391967i \(-0.128205\pi\)
\(618\) 0 0
\(619\) 0 0 0.517338 0.855781i \(-0.326923\pi\)
−0.517338 + 0.855781i \(0.673077\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.0402659 + 0.999189i −0.0402659 + 0.999189i
\(626\) 1.67252 + 0.921228i 1.67252 + 0.921228i
\(627\) 0 0
\(628\) 1.08105 1.27093i 1.08105 1.27093i
\(629\) 0.0388275 0.211875i 0.0388275 0.211875i
\(630\) 0 0
\(631\) 0 0 −0.373361 0.927686i \(-0.621795\pi\)
0.373361 + 0.927686i \(0.378205\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −0.685430 + 1.44451i −0.685430 + 1.44451i
\(635\) 0 0
\(636\) 0 0
\(637\) −0.799443 0.600742i −0.799443 0.600742i
\(638\) 0 0
\(639\) 0 0
\(640\) −0.935016 + 0.354605i −0.935016 + 0.354605i
\(641\) 0.925722 + 1.46391i 0.925722 + 1.46391i 0.885456 + 0.464723i \(0.153846\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(642\) 0 0
\(643\) 0 0 0.692724 0.721202i \(-0.256410\pi\)
−0.692724 + 0.721202i \(0.743590\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.219715 0.975564i \(-0.570513\pi\)
0.219715 + 0.975564i \(0.429487\pi\)
\(648\) −0.979791 0.200026i −0.979791 0.200026i
\(649\) 0 0
\(650\) −0.663123 + 0.748511i −0.663123 + 0.748511i
\(651\) 0 0
\(652\) 0 0
\(653\) −0.319237 + 1.19141i −0.319237 + 1.19141i 0.600742 + 0.799443i \(0.294872\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −0.284714 + 0.334720i −0.284714 + 0.334720i
\(657\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(658\) 0 0
\(659\) 0 0 0.600742 0.799443i \(-0.294872\pi\)
−0.600742 + 0.799443i \(0.705128\pi\)
\(660\) 0 0
\(661\) 1.20212 + 0.483813i 1.20212 + 0.483813i 0.885456 0.464723i \(-0.153846\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0.256479 0.192732i 0.256479 0.192732i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.85500 + 0.0373617i 1.85500 + 0.0373617i 0.935016 0.354605i \(-0.115385\pi\)
0.919979 + 0.391967i \(0.128205\pi\)
\(674\) 0.871761 0.196337i 0.871761 0.196337i
\(675\) 0 0
\(676\) −0.987050 + 0.160411i −0.987050 + 0.160411i
\(677\) −1.39105 + 1.39105i −1.39105 + 1.39105i −0.568065 + 0.822984i \(0.692308\pi\)
−0.822984 + 0.568065i \(0.807692\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −0.250678 + 0.622857i −0.250678 + 0.622857i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.600742 0.799443i \(-0.294872\pi\)
−0.600742 + 0.799443i \(0.705128\pi\)
\(684\) 0 0
\(685\) 1.26079 + 0.101781i 1.26079 + 0.101781i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.512503 1.91269i 0.512503 1.91269i
\(690\) 0 0
\(691\) 0 0 0.373361 0.927686i \(-0.378205\pi\)
−0.373361 + 0.927686i \(0.621795\pi\)
\(692\) 0.104008 + 1.02943i 0.104008 + 1.02943i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0.0355629 + 0.292886i 0.0355629 + 0.292886i
\(698\) −0.792857 + 0.212445i −0.792857 + 0.212445i
\(699\) 0 0
\(700\) 0 0
\(701\) −1.31658 + 1.48611i −1.31658 + 1.48611i −0.568065 + 0.822984i \(0.692308\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0.125752 0.773781i 0.125752 0.773781i
\(707\) 0 0
\(708\) 0 0
\(709\) −0.0306773 1.52312i −0.0306773 1.52312i −0.663123 0.748511i \(-0.730769\pi\)
0.632445 0.774605i \(-0.282051\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.69191 + 0.680937i 1.69191 + 0.680937i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.948536 0.316668i \(-0.102564\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(720\) −0.903450 + 0.428693i −0.903450 + 0.428693i
\(721\) 0 0
\(722\) 0.0402659 0.999189i 0.0402659 0.999189i
\(723\) 0 0
\(724\) 0.148055 + 1.83399i 0.148055 + 1.83399i
\(725\) −0.545190 + 0.111301i −0.545190 + 0.111301i
\(726\) 0 0
\(727\) 0 0 0.616719 0.787183i \(-0.288462\pi\)
−0.616719 + 0.787183i \(0.711538\pi\)
\(728\) 0 0
\(729\) −0.992709 0.120537i −0.992709 0.120537i
\(730\) 0.120537 + 0.992709i 0.120537 + 0.992709i
\(731\) 0 0
\(732\) 0 0
\(733\) −0.388427 + 0.0957386i −0.388427 + 0.0957386i −0.428693 0.903450i \(-0.641026\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −0.256857 + 0.356544i −0.256857 + 0.356544i
\(739\) 0 0 −0.100522 0.994935i \(-0.532051\pi\)
0.100522 + 0.994935i \(0.467949\pi\)
\(740\) 0.0892584 0.308156i 0.0892584 0.308156i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.428693 0.903450i \(-0.358974\pi\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(744\) 0 0
\(745\) −0.492709 0.986562i −0.492709 0.986562i
\(746\) −1.37966 + 1.37966i −1.37966 + 1.37966i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.999189 0.0402659i \(-0.0128205\pi\)
−0.999189 + 0.0402659i \(0.987179\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −0.492699 0.258588i −0.492699 0.258588i
\(755\) 0 0
\(756\) 0 0
\(757\) 1.30372 1.10895i 1.30372 1.10895i 0.316668 0.948536i \(-0.397436\pi\)
0.987050 0.160411i \(-0.0512821\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.20330 + 0.271005i 1.20330 + 0.271005i 0.774605 0.632445i \(-0.217949\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −0.199746 + 0.641008i −0.199746 + 0.641008i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1.10895 + 1.30372i 1.10895 + 1.30372i 0.948536 + 0.316668i \(0.102564\pi\)
0.160411 + 0.987050i \(0.448718\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.910663 1.73512i 0.910663 1.73512i
\(773\) −1.62465 0.264032i −1.62465 0.264032i −0.721202 0.692724i \(-0.756410\pi\)
−0.903450 + 0.428693i \(0.858974\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.368985 1.27388i 0.368985 1.27388i
\(777\) 0 0
\(778\) −1.78350 0.846282i −1.78350 0.846282i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.919979 0.391967i −0.919979 0.391967i
\(785\) −0.0335989 1.66817i −0.0335989 1.66817i
\(786\) 0 0
\(787\) 0 0 −0.428693 0.903450i \(-0.641026\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(788\) 0.114544 + 0.464723i 0.114544 + 0.464723i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.40049 0.345190i 1.40049 0.345190i
\(794\) −0.922670 + 0.112032i −0.922670 + 0.112032i
\(795\) 0 0
\(796\) 0 0
\(797\) 0.453223 + 0.385514i 0.453223 + 0.385514i 0.845190 0.534466i \(-0.179487\pi\)
−0.391967 + 0.919979i \(0.628205\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.464723 + 0.885456i −0.464723 + 0.885456i
\(801\) 1.74122 + 0.542586i 1.74122 + 0.542586i
\(802\) 0.799443 1.60074i 0.799443 1.60074i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0.600742 + 0.200557i 0.600742 + 0.200557i
\(809\) 0.156807 + 0.368039i 0.156807 + 0.368039i 0.979791 0.200026i \(-0.0641026\pi\)
−0.822984 + 0.568065i \(0.807692\pi\)
\(810\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(811\) 0 0 −0.911900 0.410413i \(-0.865385\pi\)
0.911900 + 0.410413i \(0.134615\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −0.0312542 + 0.516694i −0.0312542 + 0.516694i
\(819\) 0 0
\(820\) 0.00884883 + 0.439341i 0.00884883 + 0.439341i
\(821\) 0.280492 1.97655i 0.280492 1.97655i 0.0804666 0.996757i \(-0.474359\pi\)
0.200026 0.979791i \(-0.435897\pi\)
\(822\) 0 0
\(823\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(828\) 0 0
\(829\) 0.759873 0.930676i 0.759873 0.930676i −0.239316 0.970942i \(-0.576923\pi\)
0.999189 + 0.0402659i \(0.0128205\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −0.919979 + 0.391967i −0.919979 + 0.391967i
\(833\) −0.612258 + 0.275555i −0.612258 + 0.275555i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.834256 0.551377i \(-0.814103\pi\)
0.834256 + 0.551377i \(0.185897\pi\)
\(840\) 0 0
\(841\) 0.295961 + 0.623724i 0.295961 + 0.623724i
\(842\) 0.000811002 0.0402659i 0.000811002 0.0402659i
\(843\) 0 0
\(844\) 0 0
\(845\) −0.632445 + 0.774605i −0.632445 + 0.774605i
\(846\) 0 0
\(847\) 0 0
\(848\) 0.0398746 1.97976i 0.0398746 1.97976i
\(849\) 0 0
\(850\) 0.225395 + 0.632445i 0.225395 + 0.632445i
\(851\) 0 0
\(852\) 0 0
\(853\) −0.851134 0.103346i −0.851134 0.103346i −0.316668 0.948536i \(-0.602564\pi\)
−0.534466 + 0.845190i \(0.679487\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −0.0367260 + 0.0165290i −0.0367260 + 0.0165290i −0.428693 0.903450i \(-0.641026\pi\)
0.391967 + 0.919979i \(0.371795\pi\)
\(858\) 0 0
\(859\) 0 0 0.935016 0.354605i \(-0.115385\pi\)
−0.935016 + 0.354605i \(0.884615\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(864\) 0 0
\(865\) 0.760492 + 0.701573i 0.760492 + 0.701573i
\(866\) −0.720972 + 0.920252i −0.720972 + 0.920252i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.0217671 0.359852i 0.0217671 0.359852i
\(873\) 0.265283 1.29944i 0.265283 1.29944i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0.338496 + 1.01392i 0.338496 + 1.01392i 0.970942 + 0.239316i \(0.0769231\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0.662573 + 1.55512i 0.662573 + 1.55512i 0.822984 + 0.568065i \(0.192308\pi\)
−0.160411 + 0.987050i \(0.551282\pi\)
\(882\) −0.948536 0.316668i −0.948536 0.316668i
\(883\) 0 0 0.297503 0.954721i \(-0.403846\pi\)
−0.297503 + 0.954721i \(0.596154\pi\)
\(884\) −0.225395 + 0.632445i −0.225395 + 0.632445i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.335705 0.941967i \(-0.608974\pi\)
0.335705 + 0.941967i \(0.391026\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 1.71796 0.612258i 1.71796 0.612258i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0.468379 0.366951i 0.468379 0.366951i
\(899\) 0 0
\(900\) −0.391967 + 0.919979i −0.391967 + 0.919979i
\(901\) −0.958837 0.920975i −0.958837 0.920975i
\(902\) 0 0
\(903\) 0 0
\(904\) 1.97979 + 0.200026i 1.97979 + 0.200026i
\(905\) 1.32698 + 1.27458i 1.32698 + 1.27458i
\(906\) 0 0
\(907\) 0 0 −0.811378 0.584522i \(-0.801282\pi\)
0.811378 + 0.584522i \(0.198718\pi\)
\(908\) 0 0
\(909\) 0.614932 + 0.151567i 0.614932 + 0.151567i
\(910\) 0 0
\(911\) 0 0 0.970942 0.239316i \(-0.0769231\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0.334274 1.15405i 0.334274 1.15405i
\(915\) 0 0
\(916\) −0.759568 1.37902i −0.759568 1.37902i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.774605 0.632445i \(-0.217949\pi\)
−0.774605 + 0.632445i \(0.782051\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0.197751 0.0362392i 0.197751 0.0362392i
\(923\) 0 0
\(924\) 0 0
\(925\) −0.137534 0.289847i −0.137534 0.289847i
\(926\) 0 0
\(927\) 0 0
\(928\) −0.540266 0.133164i −0.540266 0.133164i
\(929\) −1.83790 0.413929i −1.83790 0.413929i −0.845190 0.534466i \(-0.820513\pi\)
−0.992709 + 0.120537i \(0.961538\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −0.100742 0.0665826i −0.100742 0.0665826i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −0.885456 + 0.464723i −0.885456 + 0.464723i
\(937\) −0.0933069 0.509159i −0.0933069 0.509159i −0.996757 0.0804666i \(-0.974359\pi\)
0.903450 0.428693i \(-0.141026\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.63406 0.509195i 1.63406 0.509195i 0.663123 0.748511i \(-0.269231\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.428693 0.903450i \(-0.358974\pi\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(948\) 0 0
\(949\) 0.160411 + 0.987050i 0.160411 + 0.987050i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.58779 + 0.639031i −1.58779 + 0.639031i −0.987050 0.160411i \(-0.948718\pi\)
−0.600742 + 0.799443i \(0.705128\pi\)
\(954\) −0.119559 1.97655i −0.119559 1.97655i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.992709 0.120537i −0.992709 0.120537i
\(962\) 0.0767779 0.311500i 0.0767779 0.311500i
\(963\) 0 0
\(964\) −0.964723 + 1.75148i −0.964723 + 1.75148i
\(965\) −0.468959 1.90264i −0.468959 1.90264i
\(966\) 0 0
\(967\) 0 0 0.822984 0.568065i \(-0.192308\pi\)
−0.822984 + 0.568065i \(0.807692\pi\)
\(968\) −0.0402659 + 0.999189i −0.0402659 + 0.999189i
\(969\) 0 0
\(970\) −0.568552 1.19820i −0.568552 1.19820i
\(971\) 0 0 0.948536 0.316668i \(-0.102564\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 1.27719 0.670319i 1.27719 0.670319i
\(977\) −0.126683 + 0.379463i −0.126683 + 0.379463i −0.992709 0.120537i \(-0.961538\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.948536 + 0.316668i −0.948536 + 0.316668i
\(981\) −0.00725961 0.360437i −0.00725961 0.360437i
\(982\) 0 0
\(983\) 0 0 −0.663123 0.748511i \(-0.730769\pi\)
0.663123 + 0.748511i \(0.269231\pi\)
\(984\) 0 0
\(985\) 0.393906 + 0.271894i 0.393906 + 0.271894i
\(986\) −0.311674 + 0.205992i −0.311674 + 0.205992i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −0.199050 + 0.0282472i −0.199050 + 0.0282472i −0.239316 0.970942i \(-0.576923\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3380.1.cs.a.1783.1 yes 48
4.3 odd 2 CM 3380.1.cs.a.1783.1 yes 48
5.2 odd 4 3380.1.cz.a.1107.1 yes 48
20.7 even 4 3380.1.cz.a.1107.1 yes 48
169.20 odd 156 3380.1.cz.a.1203.1 yes 48
676.527 even 156 3380.1.cz.a.1203.1 yes 48
845.527 even 156 inner 3380.1.cs.a.527.1 48
3380.527 odd 156 inner 3380.1.cs.a.527.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3380.1.cs.a.527.1 48 845.527 even 156 inner
3380.1.cs.a.527.1 48 3380.527 odd 156 inner
3380.1.cs.a.1783.1 yes 48 1.1 even 1 trivial
3380.1.cs.a.1783.1 yes 48 4.3 odd 2 CM
3380.1.cz.a.1107.1 yes 48 5.2 odd 4
3380.1.cz.a.1107.1 yes 48 20.7 even 4
3380.1.cz.a.1203.1 yes 48 169.20 odd 156
3380.1.cz.a.1203.1 yes 48 676.527 even 156