L(s) = 1 | + (0.866 + 0.5i)2-s + (−0.900 + 1.56i)3-s + (0.499 + 0.866i)4-s + i·5-s + (−1.56 + 0.900i)6-s + (−0.385 + 0.222i)7-s + 0.999i·8-s + (−1.12 − 1.94i)9-s + (−0.5 + 0.866i)10-s − 1.80·12-s − 0.445·14-s + (−1.56 − 0.900i)15-s + (−0.5 + 0.866i)16-s − 2.24i·18-s + (−0.866 + 0.499i)20-s − 0.801i·21-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (−0.900 + 1.56i)3-s + (0.499 + 0.866i)4-s + i·5-s + (−1.56 + 0.900i)6-s + (−0.385 + 0.222i)7-s + 0.999i·8-s + (−1.12 − 1.94i)9-s + (−0.5 + 0.866i)10-s − 1.80·12-s − 0.445·14-s + (−1.56 − 0.900i)15-s + (−0.5 + 0.866i)16-s − 2.24i·18-s + (−0.866 + 0.499i)20-s − 0.801i·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.499 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.499 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.164495796\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.164495796\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 - iT \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (0.900 - 1.56i)T + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (0.385 - 0.222i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.623 - 1.07i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.900 + 1.56i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.385 - 0.222i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.623 + 1.07i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 - 1.24iT - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.222 - 0.385i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-1.07 - 0.623i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - 1.80iT - T^{2} \) |
| 89 | \( 1 + (-1.07 - 0.623i)T + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.622138568555005166744702573901, −8.508810752169691237740382640951, −7.61405118205600771669953088113, −6.67604840758029486624224351810, −6.04094550293886930895688259155, −5.62301049518186736211696972087, −4.68208550517152644313435500020, −3.96886677605457110447487823064, −3.36496412211232152366631603809, −2.48308321934877943424920698010,
0.57016178644690592563445887186, 1.51415988002894388174364802078, 2.33961915151079165590267788065, 3.54709859381052730583812569166, 4.76764973664758085161829698644, 5.17007727693803576070613451600, 6.13729235154775748345393095208, 6.52568533544690427915511095798, 7.29142011989877076191377474271, 8.144256571343769364385501600882