L(s) = 1 | + (0.866 + 0.5i)2-s + (−0.900 + 1.56i)3-s + (0.499 + 0.866i)4-s + i·5-s + (−1.56 + 0.900i)6-s + (−0.385 + 0.222i)7-s + 0.999i·8-s + (−1.12 − 1.94i)9-s + (−0.5 + 0.866i)10-s − 1.80·12-s − 0.445·14-s + (−1.56 − 0.900i)15-s + (−0.5 + 0.866i)16-s − 2.24i·18-s + (−0.866 + 0.499i)20-s − 0.801i·21-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (−0.900 + 1.56i)3-s + (0.499 + 0.866i)4-s + i·5-s + (−1.56 + 0.900i)6-s + (−0.385 + 0.222i)7-s + 0.999i·8-s + (−1.12 − 1.94i)9-s + (−0.5 + 0.866i)10-s − 1.80·12-s − 0.445·14-s + (−1.56 − 0.900i)15-s + (−0.5 + 0.866i)16-s − 2.24i·18-s + (−0.866 + 0.499i)20-s − 0.801i·21-s + ⋯ |
Λ(s)=(=(3380s/2ΓC(s)L(s)(−0.499+0.866i)Λ(1−s)
Λ(s)=(=(3380s/2ΓC(s)L(s)(−0.499+0.866i)Λ(1−s)
Degree: |
2 |
Conductor: |
3380
= 22⋅5⋅132
|
Sign: |
−0.499+0.866i
|
Analytic conductor: |
1.68683 |
Root analytic conductor: |
1.29878 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3380(1499,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3380, ( :0), −0.499+0.866i)
|
Particular Values
L(21) |
≈ |
1.164495796 |
L(21) |
≈ |
1.164495796 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866−0.5i)T |
| 5 | 1−iT |
| 13 | 1 |
good | 3 | 1+(0.900−1.56i)T+(−0.5−0.866i)T2 |
| 7 | 1+(0.385−0.222i)T+(0.5−0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T2 |
| 17 | 1+(0.5−0.866i)T2 |
| 19 | 1+(−0.5+0.866i)T2 |
| 23 | 1+(0.623−1.07i)T+(−0.5−0.866i)T2 |
| 29 | 1+(−0.900+1.56i)T+(−0.5−0.866i)T2 |
| 31 | 1+T2 |
| 37 | 1+(−0.5−0.866i)T2 |
| 41 | 1+(−0.385−0.222i)T+(0.5+0.866i)T2 |
| 43 | 1+(0.623+1.07i)T+(−0.5+0.866i)T2 |
| 47 | 1−1.24iT−T2 |
| 53 | 1−T2 |
| 59 | 1+(−0.5+0.866i)T2 |
| 61 | 1+(−0.222−0.385i)T+(−0.5+0.866i)T2 |
| 67 | 1+(−1.07−0.623i)T+(0.5+0.866i)T2 |
| 71 | 1+(−0.5+0.866i)T2 |
| 73 | 1+T2 |
| 79 | 1−T2 |
| 83 | 1−1.80iT−T2 |
| 89 | 1+(−1.07−0.623i)T+(0.5+0.866i)T2 |
| 97 | 1+(−0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.622138568555005166744702573901, −8.508810752169691237740382640951, −7.61405118205600771669953088113, −6.67604840758029486624224351810, −6.04094550293886930895688259155, −5.62301049518186736211696972087, −4.68208550517152644313435500020, −3.96886677605457110447487823064, −3.36496412211232152366631603809, −2.48308321934877943424920698010,
0.57016178644690592563445887186, 1.51415988002894388174364802078, 2.33961915151079165590267788065, 3.54709859381052730583812569166, 4.76764973664758085161829698644, 5.17007727693803576070613451600, 6.13729235154775748345393095208, 6.52568533544690427915511095798, 7.29142011989877076191377474271, 8.144256571343769364385501600882