Properties

Label 3380.1.w.e
Level 33803380
Weight 11
Character orbit 3380.w
Analytic conductor 1.6871.687
Analytic rank 00
Dimension 1212
Projective image D7D_{7}
CM discriminant -20
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3380,1,Mod(699,3380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3380, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3380.699");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3380=225132 3380 = 2^{2} \cdot 5 \cdot 13^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3380.w (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.686839742701.68683974270
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: 12.0.17213603549184.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x125x10+19x828x6+31x46x2+1 x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D7D_{7}
Projective field: Galois closure of 7.1.38614472000.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β10q2+(β9+β5+β31)q3+(β7+1)q4+(β10β6)q5β2q6+(β6+β2+β1)q7+(β10β6)q8++(β6β2)q98+O(q100) q + \beta_{10} q^{2} + ( - \beta_{9} + \beta_{5} + \beta_{3} - 1) q^{3} + ( - \beta_{7} + 1) q^{4} + (\beta_{10} - \beta_{6}) q^{5} - \beta_{2} q^{6} + ( - \beta_{6} + \beta_{2} + \beta_1) q^{7} + (\beta_{10} - \beta_{6}) q^{8}+ \cdots + (\beta_{6} - \beta_{2}) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q2q3+6q44q96q104q124q146q16+2q2312q25+8q27+2q292q302q35+4q3612q404q42+2q432q48++2q94+O(q100) 12 q - 2 q^{3} + 6 q^{4} - 4 q^{9} - 6 q^{10} - 4 q^{12} - 4 q^{14} - 6 q^{16} + 2 q^{23} - 12 q^{25} + 8 q^{27} + 2 q^{29} - 2 q^{30} - 2 q^{35} + 4 q^{36} - 12 q^{40} - 4 q^{42} + 2 q^{43} - 2 q^{48}+ \cdots + 2 q^{94}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x125x10+19x828x6+31x46x2+1 x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (25ν11+95ν9361ν7+155ν530ν31563ν)/559 ( -25\nu^{11} + 95\nu^{9} - 361\nu^{7} + 155\nu^{5} - 30\nu^{3} - 1563\nu ) / 559 Copy content Toggle raw display
β3\beta_{3}== (25ν1095ν8+361ν6155ν4+30ν2+1004)/559 ( 25\nu^{10} - 95\nu^{8} + 361\nu^{6} - 155\nu^{4} + 30\nu^{2} + 1004 ) / 559 Copy content Toggle raw display
β4\beta_{4}== (3ν1020ν8+76ν6139ν4+124ν224)/43 ( 3\nu^{10} - 20\nu^{8} + 76\nu^{6} - 139\nu^{4} + 124\nu^{2} - 24 ) / 43 Copy content Toggle raw display
β5\beta_{5}== (45ν10171ν8+538ν6279ν4+54ν2+242)/559 ( 45\nu^{10} - 171\nu^{8} + 538\nu^{6} - 279\nu^{4} + 54\nu^{2} + 242 ) / 559 Copy content Toggle raw display
β6\beta_{6}== (70ν11266ν9+899ν7434ν5+84ν3+1246ν)/559 ( 70\nu^{11} - 266\nu^{9} + 899\nu^{7} - 434\nu^{5} + 84\nu^{3} + 1246\nu ) / 559 Copy content Toggle raw display
β7\beta_{7}== (114ν10545ν8+2071ν62831ν4+3379ν295)/559 ( 114\nu^{10} - 545\nu^{8} + 2071\nu^{6} - 2831\nu^{4} + 3379\nu^{2} - 95 ) / 559 Copy content Toggle raw display
β8\beta_{8}== (114ν11545ν9+2071ν72831ν5+3379ν395ν)/559 ( 114\nu^{11} - 545\nu^{9} + 2071\nu^{7} - 2831\nu^{5} + 3379\nu^{3} - 95\nu ) / 559 Copy content Toggle raw display
β9\beta_{9}== (128ν10+710ν82698ν6+4483ν44402ν2+852)/559 ( -128\nu^{10} + 710\nu^{8} - 2698\nu^{6} + 4483\nu^{4} - 4402\nu^{2} + 852 ) / 559 Copy content Toggle raw display
β10\beta_{10}== (242ν11+1255ν94769ν7+7314ν57781ν3+1506ν)/559 ( -242\nu^{11} + 1255\nu^{9} - 4769\nu^{7} + 7314\nu^{5} - 7781\nu^{3} + 1506\nu ) / 559 Copy content Toggle raw display
β11\beta_{11}== (317ν11+1540ν95852ν7+8338ν59548ν3+1848ν)/559 ( -317\nu^{11} + 1540\nu^{9} - 5852\nu^{7} + 8338\nu^{5} - 9548\nu^{3} + 1848\nu ) / 559 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β9+β7+β4β3+1 \beta_{9} + \beta_{7} + \beta_{4} - \beta_{3} + 1 Copy content Toggle raw display
ν3\nu^{3}== β11+3β8+β2 \beta_{11} + 3\beta_{8} + \beta_{2} Copy content Toggle raw display
ν4\nu^{4}== 3β9+2β7+4β42 3\beta_{9} + 2\beta_{7} + 4\beta_{4} - 2 Copy content Toggle raw display
ν5\nu^{5}== 4β11β10+9β89β1 4\beta_{11} - \beta_{10} + 9\beta_{8} - 9\beta_1 Copy content Toggle raw display
ν6\nu^{6}== 5β5+9β314 -5\beta_{5} + 9\beta_{3} - 14 Copy content Toggle raw display
ν7\nu^{7}== 5β614β228β1 -5\beta_{6} - 14\beta_{2} - 28\beta_1 Copy content Toggle raw display
ν8\nu^{8}== 28β914β719β547β4+28β328 -28\beta_{9} - 14\beta_{7} - 19\beta_{5} - 47\beta_{4} + 28\beta_{3} - 28 Copy content Toggle raw display
ν9\nu^{9}== 47β11+19β1089β819β647β2 -47\beta_{11} + 19\beta_{10} - 89\beta_{8} - 19\beta_{6} - 47\beta_{2} Copy content Toggle raw display
ν10\nu^{10}== 89β942β7155β4+42 -89\beta_{9} - 42\beta_{7} - 155\beta_{4} + 42 Copy content Toggle raw display
ν11\nu^{11}== 155β11+66β10286β8+286β1 -155\beta_{11} + 66\beta_{10} - 286\beta_{8} + 286\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3380Z)×\left(\mathbb{Z}/3380\mathbb{Z}\right)^\times.

nn 677677 16911691 18611861
χ(n)\chi(n) 1-1 1-1 1β71 - \beta_{7}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
699.1
1.07992 + 0.623490i
−1.56052 0.900969i
−0.385418 0.222521i
−1.07992 0.623490i
1.56052 + 0.900969i
0.385418 + 0.222521i
1.07992 0.623490i
−1.56052 + 0.900969i
−0.385418 + 0.222521i
−1.07992 + 0.623490i
1.56052 0.900969i
0.385418 0.222521i
−0.866025 + 0.500000i −0.900969 1.56052i 0.500000 0.866025i 1.00000i 1.56052 + 0.900969i 0.385418 + 0.222521i 1.00000i −1.12349 + 1.94594i −0.500000 0.866025i
699.2 −0.866025 + 0.500000i −0.222521 0.385418i 0.500000 0.866025i 1.00000i 0.385418 + 0.222521i −1.07992 0.623490i 1.00000i 0.400969 0.694498i −0.500000 0.866025i
699.3 −0.866025 + 0.500000i 0.623490 + 1.07992i 0.500000 0.866025i 1.00000i −1.07992 0.623490i 1.56052 + 0.900969i 1.00000i −0.277479 + 0.480608i −0.500000 0.866025i
699.4 0.866025 0.500000i −0.900969 1.56052i 0.500000 0.866025i 1.00000i −1.56052 0.900969i −0.385418 0.222521i 1.00000i −1.12349 + 1.94594i −0.500000 0.866025i
699.5 0.866025 0.500000i −0.222521 0.385418i 0.500000 0.866025i 1.00000i −0.385418 0.222521i 1.07992 + 0.623490i 1.00000i 0.400969 0.694498i −0.500000 0.866025i
699.6 0.866025 0.500000i 0.623490 + 1.07992i 0.500000 0.866025i 1.00000i 1.07992 + 0.623490i −1.56052 0.900969i 1.00000i −0.277479 + 0.480608i −0.500000 0.866025i
1499.1 −0.866025 0.500000i −0.900969 + 1.56052i 0.500000 + 0.866025i 1.00000i 1.56052 0.900969i 0.385418 0.222521i 1.00000i −1.12349 1.94594i −0.500000 + 0.866025i
1499.2 −0.866025 0.500000i −0.222521 + 0.385418i 0.500000 + 0.866025i 1.00000i 0.385418 0.222521i −1.07992 + 0.623490i 1.00000i 0.400969 + 0.694498i −0.500000 + 0.866025i
1499.3 −0.866025 0.500000i 0.623490 1.07992i 0.500000 + 0.866025i 1.00000i −1.07992 + 0.623490i 1.56052 0.900969i 1.00000i −0.277479 0.480608i −0.500000 + 0.866025i
1499.4 0.866025 + 0.500000i −0.900969 + 1.56052i 0.500000 + 0.866025i 1.00000i −1.56052 + 0.900969i −0.385418 + 0.222521i 1.00000i −1.12349 1.94594i −0.500000 + 0.866025i
1499.5 0.866025 + 0.500000i −0.222521 + 0.385418i 0.500000 + 0.866025i 1.00000i −0.385418 + 0.222521i 1.07992 0.623490i 1.00000i 0.400969 + 0.694498i −0.500000 + 0.866025i
1499.6 0.866025 + 0.500000i 0.623490 1.07992i 0.500000 + 0.866025i 1.00000i 1.07992 0.623490i −1.56052 + 0.900969i 1.00000i −0.277479 0.480608i −0.500000 + 0.866025i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 699.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by Q(5)\Q(\sqrt{-5})
13.b even 2 1 inner
13.c even 3 1 inner
13.e even 6 1 inner
260.g odd 2 1 inner
260.v odd 6 1 inner
260.w odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3380.1.w.e 12
4.b odd 2 1 3380.1.w.f 12
5.b even 2 1 3380.1.w.f 12
13.b even 2 1 inner 3380.1.w.e 12
13.c even 3 1 3380.1.g.d 6
13.c even 3 1 inner 3380.1.w.e 12
13.d odd 4 1 3380.1.v.d 6
13.d odd 4 1 3380.1.v.f 6
13.e even 6 1 3380.1.g.d 6
13.e even 6 1 inner 3380.1.w.e 12
13.f odd 12 1 3380.1.h.c yes 3
13.f odd 12 1 3380.1.h.e yes 3
13.f odd 12 1 3380.1.v.d 6
13.f odd 12 1 3380.1.v.f 6
20.d odd 2 1 CM 3380.1.w.e 12
52.b odd 2 1 3380.1.w.f 12
52.f even 4 1 3380.1.v.e 6
52.f even 4 1 3380.1.v.g 6
52.i odd 6 1 3380.1.g.c 6
52.i odd 6 1 3380.1.w.f 12
52.j odd 6 1 3380.1.g.c 6
52.j odd 6 1 3380.1.w.f 12
52.l even 12 1 3380.1.h.b 3
52.l even 12 1 3380.1.h.d yes 3
52.l even 12 1 3380.1.v.e 6
52.l even 12 1 3380.1.v.g 6
65.d even 2 1 3380.1.w.f 12
65.g odd 4 1 3380.1.v.e 6
65.g odd 4 1 3380.1.v.g 6
65.l even 6 1 3380.1.g.c 6
65.l even 6 1 3380.1.w.f 12
65.n even 6 1 3380.1.g.c 6
65.n even 6 1 3380.1.w.f 12
65.s odd 12 1 3380.1.h.b 3
65.s odd 12 1 3380.1.h.d yes 3
65.s odd 12 1 3380.1.v.e 6
65.s odd 12 1 3380.1.v.g 6
260.g odd 2 1 inner 3380.1.w.e 12
260.u even 4 1 3380.1.v.d 6
260.u even 4 1 3380.1.v.f 6
260.v odd 6 1 3380.1.g.d 6
260.v odd 6 1 inner 3380.1.w.e 12
260.w odd 6 1 3380.1.g.d 6
260.w odd 6 1 inner 3380.1.w.e 12
260.bc even 12 1 3380.1.h.c yes 3
260.bc even 12 1 3380.1.h.e yes 3
260.bc even 12 1 3380.1.v.d 6
260.bc even 12 1 3380.1.v.f 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3380.1.g.c 6 52.i odd 6 1
3380.1.g.c 6 52.j odd 6 1
3380.1.g.c 6 65.l even 6 1
3380.1.g.c 6 65.n even 6 1
3380.1.g.d 6 13.c even 3 1
3380.1.g.d 6 13.e even 6 1
3380.1.g.d 6 260.v odd 6 1
3380.1.g.d 6 260.w odd 6 1
3380.1.h.b 3 52.l even 12 1
3380.1.h.b 3 65.s odd 12 1
3380.1.h.c yes 3 13.f odd 12 1
3380.1.h.c yes 3 260.bc even 12 1
3380.1.h.d yes 3 52.l even 12 1
3380.1.h.d yes 3 65.s odd 12 1
3380.1.h.e yes 3 13.f odd 12 1
3380.1.h.e yes 3 260.bc even 12 1
3380.1.v.d 6 13.d odd 4 1
3380.1.v.d 6 13.f odd 12 1
3380.1.v.d 6 260.u even 4 1
3380.1.v.d 6 260.bc even 12 1
3380.1.v.e 6 52.f even 4 1
3380.1.v.e 6 52.l even 12 1
3380.1.v.e 6 65.g odd 4 1
3380.1.v.e 6 65.s odd 12 1
3380.1.v.f 6 13.d odd 4 1
3380.1.v.f 6 13.f odd 12 1
3380.1.v.f 6 260.u even 4 1
3380.1.v.f 6 260.bc even 12 1
3380.1.v.g 6 52.f even 4 1
3380.1.v.g 6 52.l even 12 1
3380.1.v.g 6 65.g odd 4 1
3380.1.v.g 6 65.s odd 12 1
3380.1.w.e 12 1.a even 1 1 trivial
3380.1.w.e 12 13.b even 2 1 inner
3380.1.w.e 12 13.c even 3 1 inner
3380.1.w.e 12 13.e even 6 1 inner
3380.1.w.e 12 20.d odd 2 1 CM
3380.1.w.e 12 260.g odd 2 1 inner
3380.1.w.e 12 260.v odd 6 1 inner
3380.1.w.e 12 260.w odd 6 1 inner
3380.1.w.f 12 4.b odd 2 1
3380.1.w.f 12 5.b even 2 1
3380.1.w.f 12 52.b odd 2 1
3380.1.w.f 12 52.i odd 6 1
3380.1.w.f 12 52.j odd 6 1
3380.1.w.f 12 65.d even 2 1
3380.1.w.f 12 65.l even 6 1
3380.1.w.f 12 65.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(3380,[χ])S_{1}^{\mathrm{new}}(3380, [\chi]):

T36+T35+3T34+5T32+2T3+1 T_{3}^{6} + T_{3}^{5} + 3T_{3}^{4} + 5T_{3}^{2} + 2T_{3} + 1 Copy content Toggle raw display
T17 T_{17} Copy content Toggle raw display
T37 T_{37} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4T2+1)3 (T^{4} - T^{2} + 1)^{3} Copy content Toggle raw display
33 (T6+T5+3T4++1)2 (T^{6} + T^{5} + 3 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
55 (T2+1)6 (T^{2} + 1)^{6} Copy content Toggle raw display
77 T125T10++1 T^{12} - 5 T^{10} + \cdots + 1 Copy content Toggle raw display
1111 T12 T^{12} Copy content Toggle raw display
1313 T12 T^{12} Copy content Toggle raw display
1717 T12 T^{12} Copy content Toggle raw display
1919 T12 T^{12} Copy content Toggle raw display
2323 (T6T5+3T4++1)2 (T^{6} - T^{5} + 3 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
2929 (T6T5+3T4++1)2 (T^{6} - T^{5} + 3 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
3131 T12 T^{12} Copy content Toggle raw display
3737 T12 T^{12} Copy content Toggle raw display
4141 T125T10++1 T^{12} - 5 T^{10} + \cdots + 1 Copy content Toggle raw display
4343 (T6T5+3T4++1)2 (T^{6} - T^{5} + 3 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
4747 (T6+5T4+6T2+1)2 (T^{6} + 5 T^{4} + 6 T^{2} + 1)^{2} Copy content Toggle raw display
5353 T12 T^{12} Copy content Toggle raw display
5959 T12 T^{12} Copy content Toggle raw display
6161 (T6T5+3T4++1)2 (T^{6} - T^{5} + 3 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
6767 T125T10++1 T^{12} - 5 T^{10} + \cdots + 1 Copy content Toggle raw display
7171 T12 T^{12} Copy content Toggle raw display
7373 T12 T^{12} Copy content Toggle raw display
7979 T12 T^{12} Copy content Toggle raw display
8383 (T6+5T4+6T2+1)2 (T^{6} + 5 T^{4} + 6 T^{2} + 1)^{2} Copy content Toggle raw display
8989 T125T10++1 T^{12} - 5 T^{10} + \cdots + 1 Copy content Toggle raw display
9797 T12 T^{12} Copy content Toggle raw display
show more
show less