Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3380,1,Mod(699,3380)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3380, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 5]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3380.699");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3380.w (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 12.0.17213603549184.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of 7.1.38614472000.1 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
699.1 |
|
−0.866025 | + | 0.500000i | −0.900969 | − | 1.56052i | 0.500000 | − | 0.866025i | 1.00000i | 1.56052 | + | 0.900969i | 0.385418 | + | 0.222521i | 1.00000i | −1.12349 | + | 1.94594i | −0.500000 | − | 0.866025i | ||||||||||||||||||||||||||||||||||||||||
699.2 | −0.866025 | + | 0.500000i | −0.222521 | − | 0.385418i | 0.500000 | − | 0.866025i | 1.00000i | 0.385418 | + | 0.222521i | −1.07992 | − | 0.623490i | 1.00000i | 0.400969 | − | 0.694498i | −0.500000 | − | 0.866025i | |||||||||||||||||||||||||||||||||||||||||
699.3 | −0.866025 | + | 0.500000i | 0.623490 | + | 1.07992i | 0.500000 | − | 0.866025i | 1.00000i | −1.07992 | − | 0.623490i | 1.56052 | + | 0.900969i | 1.00000i | −0.277479 | + | 0.480608i | −0.500000 | − | 0.866025i | |||||||||||||||||||||||||||||||||||||||||
699.4 | 0.866025 | − | 0.500000i | −0.900969 | − | 1.56052i | 0.500000 | − | 0.866025i | − | 1.00000i | −1.56052 | − | 0.900969i | −0.385418 | − | 0.222521i | − | 1.00000i | −1.12349 | + | 1.94594i | −0.500000 | − | 0.866025i | |||||||||||||||||||||||||||||||||||||||
699.5 | 0.866025 | − | 0.500000i | −0.222521 | − | 0.385418i | 0.500000 | − | 0.866025i | − | 1.00000i | −0.385418 | − | 0.222521i | 1.07992 | + | 0.623490i | − | 1.00000i | 0.400969 | − | 0.694498i | −0.500000 | − | 0.866025i | |||||||||||||||||||||||||||||||||||||||
699.6 | 0.866025 | − | 0.500000i | 0.623490 | + | 1.07992i | 0.500000 | − | 0.866025i | − | 1.00000i | 1.07992 | + | 0.623490i | −1.56052 | − | 0.900969i | − | 1.00000i | −0.277479 | + | 0.480608i | −0.500000 | − | 0.866025i | |||||||||||||||||||||||||||||||||||||||
1499.1 | −0.866025 | − | 0.500000i | −0.900969 | + | 1.56052i | 0.500000 | + | 0.866025i | − | 1.00000i | 1.56052 | − | 0.900969i | 0.385418 | − | 0.222521i | − | 1.00000i | −1.12349 | − | 1.94594i | −0.500000 | + | 0.866025i | |||||||||||||||||||||||||||||||||||||||
1499.2 | −0.866025 | − | 0.500000i | −0.222521 | + | 0.385418i | 0.500000 | + | 0.866025i | − | 1.00000i | 0.385418 | − | 0.222521i | −1.07992 | + | 0.623490i | − | 1.00000i | 0.400969 | + | 0.694498i | −0.500000 | + | 0.866025i | |||||||||||||||||||||||||||||||||||||||
1499.3 | −0.866025 | − | 0.500000i | 0.623490 | − | 1.07992i | 0.500000 | + | 0.866025i | − | 1.00000i | −1.07992 | + | 0.623490i | 1.56052 | − | 0.900969i | − | 1.00000i | −0.277479 | − | 0.480608i | −0.500000 | + | 0.866025i | |||||||||||||||||||||||||||||||||||||||
1499.4 | 0.866025 | + | 0.500000i | −0.900969 | + | 1.56052i | 0.500000 | + | 0.866025i | 1.00000i | −1.56052 | + | 0.900969i | −0.385418 | + | 0.222521i | 1.00000i | −1.12349 | − | 1.94594i | −0.500000 | + | 0.866025i | |||||||||||||||||||||||||||||||||||||||||
1499.5 | 0.866025 | + | 0.500000i | −0.222521 | + | 0.385418i | 0.500000 | + | 0.866025i | 1.00000i | −0.385418 | + | 0.222521i | 1.07992 | − | 0.623490i | 1.00000i | 0.400969 | + | 0.694498i | −0.500000 | + | 0.866025i | |||||||||||||||||||||||||||||||||||||||||
1499.6 | 0.866025 | + | 0.500000i | 0.623490 | − | 1.07992i | 0.500000 | + | 0.866025i | 1.00000i | 1.07992 | − | 0.623490i | −1.56052 | + | 0.900969i | 1.00000i | −0.277479 | − | 0.480608i | −0.500000 | + | 0.866025i | |||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
20.d | odd | 2 | 1 | CM by |
13.b | even | 2 | 1 | inner |
13.c | even | 3 | 1 | inner |
13.e | even | 6 | 1 | inner |
260.g | odd | 2 | 1 | inner |
260.v | odd | 6 | 1 | inner |
260.w | odd | 6 | 1 | inner |
Twists
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|