Properties

Label 3380.1.w.e
Level $3380$
Weight $1$
Character orbit 3380.w
Analytic conductor $1.687$
Analytic rank $0$
Dimension $12$
Projective image $D_{7}$
CM discriminant -20
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3380,1,Mod(699,3380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3380, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3380.699");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3380 = 2^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3380.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.68683974270\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.17213603549184.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{7}\)
Projective field: Galois closure of 7.1.38614472000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{10} q^{2} + ( - \beta_{9} + \beta_{5} + \beta_{3} - 1) q^{3} + ( - \beta_{7} + 1) q^{4} + (\beta_{10} - \beta_{6}) q^{5} - \beta_{2} q^{6} + ( - \beta_{6} + \beta_{2} + \beta_1) q^{7} + (\beta_{10} - \beta_{6}) q^{8}+ \cdots + (\beta_{6} - \beta_{2}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{3} + 6 q^{4} - 4 q^{9} - 6 q^{10} - 4 q^{12} - 4 q^{14} - 6 q^{16} + 2 q^{23} - 12 q^{25} + 8 q^{27} + 2 q^{29} - 2 q^{30} - 2 q^{35} + 4 q^{36} - 12 q^{40} - 4 q^{42} + 2 q^{43} - 2 q^{48}+ \cdots + 2 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -25\nu^{11} + 95\nu^{9} - 361\nu^{7} + 155\nu^{5} - 30\nu^{3} - 1563\nu ) / 559 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 25\nu^{10} - 95\nu^{8} + 361\nu^{6} - 155\nu^{4} + 30\nu^{2} + 1004 ) / 559 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 3\nu^{10} - 20\nu^{8} + 76\nu^{6} - 139\nu^{4} + 124\nu^{2} - 24 ) / 43 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 45\nu^{10} - 171\nu^{8} + 538\nu^{6} - 279\nu^{4} + 54\nu^{2} + 242 ) / 559 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 70\nu^{11} - 266\nu^{9} + 899\nu^{7} - 434\nu^{5} + 84\nu^{3} + 1246\nu ) / 559 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 114\nu^{10} - 545\nu^{8} + 2071\nu^{6} - 2831\nu^{4} + 3379\nu^{2} - 95 ) / 559 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 114\nu^{11} - 545\nu^{9} + 2071\nu^{7} - 2831\nu^{5} + 3379\nu^{3} - 95\nu ) / 559 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -128\nu^{10} + 710\nu^{8} - 2698\nu^{6} + 4483\nu^{4} - 4402\nu^{2} + 852 ) / 559 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -242\nu^{11} + 1255\nu^{9} - 4769\nu^{7} + 7314\nu^{5} - 7781\nu^{3} + 1506\nu ) / 559 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( -317\nu^{11} + 1540\nu^{9} - 5852\nu^{7} + 8338\nu^{5} - 9548\nu^{3} + 1848\nu ) / 559 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{9} + \beta_{7} + \beta_{4} - \beta_{3} + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{11} + 3\beta_{8} + \beta_{2} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 3\beta_{9} + 2\beta_{7} + 4\beta_{4} - 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4\beta_{11} - \beta_{10} + 9\beta_{8} - 9\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -5\beta_{5} + 9\beta_{3} - 14 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -5\beta_{6} - 14\beta_{2} - 28\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( -28\beta_{9} - 14\beta_{7} - 19\beta_{5} - 47\beta_{4} + 28\beta_{3} - 28 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( -47\beta_{11} + 19\beta_{10} - 89\beta_{8} - 19\beta_{6} - 47\beta_{2} \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( -89\beta_{9} - 42\beta_{7} - 155\beta_{4} + 42 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( -155\beta_{11} + 66\beta_{10} - 286\beta_{8} + 286\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3380\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1691\) \(1861\)
\(\chi(n)\) \(-1\) \(-1\) \(1 - \beta_{7}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
699.1
1.07992 + 0.623490i
−1.56052 0.900969i
−0.385418 0.222521i
−1.07992 0.623490i
1.56052 + 0.900969i
0.385418 + 0.222521i
1.07992 0.623490i
−1.56052 + 0.900969i
−0.385418 + 0.222521i
−1.07992 + 0.623490i
1.56052 0.900969i
0.385418 0.222521i
−0.866025 + 0.500000i −0.900969 1.56052i 0.500000 0.866025i 1.00000i 1.56052 + 0.900969i 0.385418 + 0.222521i 1.00000i −1.12349 + 1.94594i −0.500000 0.866025i
699.2 −0.866025 + 0.500000i −0.222521 0.385418i 0.500000 0.866025i 1.00000i 0.385418 + 0.222521i −1.07992 0.623490i 1.00000i 0.400969 0.694498i −0.500000 0.866025i
699.3 −0.866025 + 0.500000i 0.623490 + 1.07992i 0.500000 0.866025i 1.00000i −1.07992 0.623490i 1.56052 + 0.900969i 1.00000i −0.277479 + 0.480608i −0.500000 0.866025i
699.4 0.866025 0.500000i −0.900969 1.56052i 0.500000 0.866025i 1.00000i −1.56052 0.900969i −0.385418 0.222521i 1.00000i −1.12349 + 1.94594i −0.500000 0.866025i
699.5 0.866025 0.500000i −0.222521 0.385418i 0.500000 0.866025i 1.00000i −0.385418 0.222521i 1.07992 + 0.623490i 1.00000i 0.400969 0.694498i −0.500000 0.866025i
699.6 0.866025 0.500000i 0.623490 + 1.07992i 0.500000 0.866025i 1.00000i 1.07992 + 0.623490i −1.56052 0.900969i 1.00000i −0.277479 + 0.480608i −0.500000 0.866025i
1499.1 −0.866025 0.500000i −0.900969 + 1.56052i 0.500000 + 0.866025i 1.00000i 1.56052 0.900969i 0.385418 0.222521i 1.00000i −1.12349 1.94594i −0.500000 + 0.866025i
1499.2 −0.866025 0.500000i −0.222521 + 0.385418i 0.500000 + 0.866025i 1.00000i 0.385418 0.222521i −1.07992 + 0.623490i 1.00000i 0.400969 + 0.694498i −0.500000 + 0.866025i
1499.3 −0.866025 0.500000i 0.623490 1.07992i 0.500000 + 0.866025i 1.00000i −1.07992 + 0.623490i 1.56052 0.900969i 1.00000i −0.277479 0.480608i −0.500000 + 0.866025i
1499.4 0.866025 + 0.500000i −0.900969 + 1.56052i 0.500000 + 0.866025i 1.00000i −1.56052 + 0.900969i −0.385418 + 0.222521i 1.00000i −1.12349 1.94594i −0.500000 + 0.866025i
1499.5 0.866025 + 0.500000i −0.222521 + 0.385418i 0.500000 + 0.866025i 1.00000i −0.385418 + 0.222521i 1.07992 0.623490i 1.00000i 0.400969 + 0.694498i −0.500000 + 0.866025i
1499.6 0.866025 + 0.500000i 0.623490 1.07992i 0.500000 + 0.866025i 1.00000i 1.07992 0.623490i −1.56052 + 0.900969i 1.00000i −0.277479 0.480608i −0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 699.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
13.b even 2 1 inner
13.c even 3 1 inner
13.e even 6 1 inner
260.g odd 2 1 inner
260.v odd 6 1 inner
260.w odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3380.1.w.e 12
4.b odd 2 1 3380.1.w.f 12
5.b even 2 1 3380.1.w.f 12
13.b even 2 1 inner 3380.1.w.e 12
13.c even 3 1 3380.1.g.d 6
13.c even 3 1 inner 3380.1.w.e 12
13.d odd 4 1 3380.1.v.d 6
13.d odd 4 1 3380.1.v.f 6
13.e even 6 1 3380.1.g.d 6
13.e even 6 1 inner 3380.1.w.e 12
13.f odd 12 1 3380.1.h.c yes 3
13.f odd 12 1 3380.1.h.e yes 3
13.f odd 12 1 3380.1.v.d 6
13.f odd 12 1 3380.1.v.f 6
20.d odd 2 1 CM 3380.1.w.e 12
52.b odd 2 1 3380.1.w.f 12
52.f even 4 1 3380.1.v.e 6
52.f even 4 1 3380.1.v.g 6
52.i odd 6 1 3380.1.g.c 6
52.i odd 6 1 3380.1.w.f 12
52.j odd 6 1 3380.1.g.c 6
52.j odd 6 1 3380.1.w.f 12
52.l even 12 1 3380.1.h.b 3
52.l even 12 1 3380.1.h.d yes 3
52.l even 12 1 3380.1.v.e 6
52.l even 12 1 3380.1.v.g 6
65.d even 2 1 3380.1.w.f 12
65.g odd 4 1 3380.1.v.e 6
65.g odd 4 1 3380.1.v.g 6
65.l even 6 1 3380.1.g.c 6
65.l even 6 1 3380.1.w.f 12
65.n even 6 1 3380.1.g.c 6
65.n even 6 1 3380.1.w.f 12
65.s odd 12 1 3380.1.h.b 3
65.s odd 12 1 3380.1.h.d yes 3
65.s odd 12 1 3380.1.v.e 6
65.s odd 12 1 3380.1.v.g 6
260.g odd 2 1 inner 3380.1.w.e 12
260.u even 4 1 3380.1.v.d 6
260.u even 4 1 3380.1.v.f 6
260.v odd 6 1 3380.1.g.d 6
260.v odd 6 1 inner 3380.1.w.e 12
260.w odd 6 1 3380.1.g.d 6
260.w odd 6 1 inner 3380.1.w.e 12
260.bc even 12 1 3380.1.h.c yes 3
260.bc even 12 1 3380.1.h.e yes 3
260.bc even 12 1 3380.1.v.d 6
260.bc even 12 1 3380.1.v.f 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3380.1.g.c 6 52.i odd 6 1
3380.1.g.c 6 52.j odd 6 1
3380.1.g.c 6 65.l even 6 1
3380.1.g.c 6 65.n even 6 1
3380.1.g.d 6 13.c even 3 1
3380.1.g.d 6 13.e even 6 1
3380.1.g.d 6 260.v odd 6 1
3380.1.g.d 6 260.w odd 6 1
3380.1.h.b 3 52.l even 12 1
3380.1.h.b 3 65.s odd 12 1
3380.1.h.c yes 3 13.f odd 12 1
3380.1.h.c yes 3 260.bc even 12 1
3380.1.h.d yes 3 52.l even 12 1
3380.1.h.d yes 3 65.s odd 12 1
3380.1.h.e yes 3 13.f odd 12 1
3380.1.h.e yes 3 260.bc even 12 1
3380.1.v.d 6 13.d odd 4 1
3380.1.v.d 6 13.f odd 12 1
3380.1.v.d 6 260.u even 4 1
3380.1.v.d 6 260.bc even 12 1
3380.1.v.e 6 52.f even 4 1
3380.1.v.e 6 52.l even 12 1
3380.1.v.e 6 65.g odd 4 1
3380.1.v.e 6 65.s odd 12 1
3380.1.v.f 6 13.d odd 4 1
3380.1.v.f 6 13.f odd 12 1
3380.1.v.f 6 260.u even 4 1
3380.1.v.f 6 260.bc even 12 1
3380.1.v.g 6 52.f even 4 1
3380.1.v.g 6 52.l even 12 1
3380.1.v.g 6 65.g odd 4 1
3380.1.v.g 6 65.s odd 12 1
3380.1.w.e 12 1.a even 1 1 trivial
3380.1.w.e 12 13.b even 2 1 inner
3380.1.w.e 12 13.c even 3 1 inner
3380.1.w.e 12 13.e even 6 1 inner
3380.1.w.e 12 20.d odd 2 1 CM
3380.1.w.e 12 260.g odd 2 1 inner
3380.1.w.e 12 260.v odd 6 1 inner
3380.1.w.e 12 260.w odd 6 1 inner
3380.1.w.f 12 4.b odd 2 1
3380.1.w.f 12 5.b even 2 1
3380.1.w.f 12 52.b odd 2 1
3380.1.w.f 12 52.i odd 6 1
3380.1.w.f 12 52.j odd 6 1
3380.1.w.f 12 65.d even 2 1
3380.1.w.f 12 65.l even 6 1
3380.1.w.f 12 65.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3380, [\chi])\):

\( T_{3}^{6} + T_{3}^{5} + 3T_{3}^{4} + 5T_{3}^{2} + 2T_{3} + 1 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display
\( T_{37} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - T^{2} + 1)^{3} \) Copy content Toggle raw display
$3$ \( (T^{6} + T^{5} + 3 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{6} \) Copy content Toggle raw display
$7$ \( T^{12} - 5 T^{10} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{12} \) Copy content Toggle raw display
$13$ \( T^{12} \) Copy content Toggle raw display
$17$ \( T^{12} \) Copy content Toggle raw display
$19$ \( T^{12} \) Copy content Toggle raw display
$23$ \( (T^{6} - T^{5} + 3 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$29$ \( (T^{6} - T^{5} + 3 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{12} \) Copy content Toggle raw display
$37$ \( T^{12} \) Copy content Toggle raw display
$41$ \( T^{12} - 5 T^{10} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( (T^{6} - T^{5} + 3 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$47$ \( (T^{6} + 5 T^{4} + 6 T^{2} + 1)^{2} \) Copy content Toggle raw display
$53$ \( T^{12} \) Copy content Toggle raw display
$59$ \( T^{12} \) Copy content Toggle raw display
$61$ \( (T^{6} - T^{5} + 3 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{12} - 5 T^{10} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{12} \) Copy content Toggle raw display
$73$ \( T^{12} \) Copy content Toggle raw display
$79$ \( T^{12} \) Copy content Toggle raw display
$83$ \( (T^{6} + 5 T^{4} + 6 T^{2} + 1)^{2} \) Copy content Toggle raw display
$89$ \( T^{12} - 5 T^{10} + \cdots + 1 \) Copy content Toggle raw display
$97$ \( T^{12} \) Copy content Toggle raw display
show more
show less