L(s) = 1 | + (−0.797 + 1.74i)2-s + (−0.959 − 0.281i)3-s + (−1.75 − 2.02i)4-s + (0.841 − 0.540i)5-s + (1.25 − 1.45i)6-s + (3.09 − 0.909i)8-s + (0.841 + 0.540i)9-s + (0.273 + 1.89i)10-s + (1.11 + 2.44i)12-s + (−0.959 + 0.281i)15-s + (−0.500 + 3.47i)16-s + (0.857 − 0.989i)17-s + (−1.61 + 1.03i)18-s + (0.186 + 0.215i)19-s + (−2.57 − 0.755i)20-s + ⋯ |
L(s) = 1 | + (−0.797 + 1.74i)2-s + (−0.959 − 0.281i)3-s + (−1.75 − 2.02i)4-s + (0.841 − 0.540i)5-s + (1.25 − 1.45i)6-s + (3.09 − 0.909i)8-s + (0.841 + 0.540i)9-s + (0.273 + 1.89i)10-s + (1.11 + 2.44i)12-s + (−0.959 + 0.281i)15-s + (−0.500 + 3.47i)16-s + (0.857 − 0.989i)17-s + (−1.61 + 1.03i)18-s + (0.186 + 0.215i)19-s + (−2.57 − 0.755i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 345 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.392 - 0.919i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 345 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.392 - 0.919i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4441961962\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4441961962\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.959 + 0.281i)T \) |
| 5 | \( 1 + (-0.841 + 0.540i)T \) |
| 23 | \( 1 + (-0.415 - 0.909i)T \) |
good | 2 | \( 1 + (0.797 - 1.74i)T + (-0.654 - 0.755i)T^{2} \) |
| 7 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 11 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 13 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 17 | \( 1 + (-0.857 + 0.989i)T + (-0.142 - 0.989i)T^{2} \) |
| 19 | \( 1 + (-0.186 - 0.215i)T + (-0.142 + 0.989i)T^{2} \) |
| 29 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 31 | \( 1 + (-0.273 + 0.0801i)T + (0.841 - 0.540i)T^{2} \) |
| 37 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 41 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 43 | \( 1 + (-0.841 - 0.540i)T^{2} \) |
| 47 | \( 1 - 0.830T + T^{2} \) |
| 53 | \( 1 + (0.118 - 0.822i)T + (-0.959 - 0.281i)T^{2} \) |
| 59 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 61 | \( 1 + (0.797 - 0.234i)T + (0.841 - 0.540i)T^{2} \) |
| 67 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 71 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 73 | \( 1 + (0.142 - 0.989i)T^{2} \) |
| 79 | \( 1 + (0.239 + 1.66i)T + (-0.959 + 0.281i)T^{2} \) |
| 83 | \( 1 + (1.61 + 1.03i)T + (0.415 + 0.909i)T^{2} \) |
| 89 | \( 1 + (-0.841 - 0.540i)T^{2} \) |
| 97 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.91089065759182426988354114824, −10.54961406989724961272142724406, −9.764595797492933284693129556603, −9.096118387094815778649703111029, −7.87399618298587003716072794061, −7.12876864929447214911294639144, −6.11542446581340811521417616236, −5.46272047483734989227850091498, −4.70853200876993286001993447405, −1.23386469457785985176323931721,
1.46459226336072092376792273284, 2.93522196579340408021302567228, 4.17102270130317430548406875996, 5.45391537050398861032702333170, 6.81838041435685354096406553739, 8.188313847907576118045191991167, 9.366145756786886366382605886330, 10.00029626495290873643209817560, 10.68446215545145526478523557791, 11.21942454144155133550407183043