L(s) = 1 | + (−0.797 + 1.74i)2-s + (−0.959 − 0.281i)3-s + (−1.75 − 2.02i)4-s + (0.841 − 0.540i)5-s + (1.25 − 1.45i)6-s + (3.09 − 0.909i)8-s + (0.841 + 0.540i)9-s + (0.273 + 1.89i)10-s + (1.11 + 2.44i)12-s + (−0.959 + 0.281i)15-s + (−0.500 + 3.47i)16-s + (0.857 − 0.989i)17-s + (−1.61 + 1.03i)18-s + (0.186 + 0.215i)19-s + (−2.57 − 0.755i)20-s + ⋯ |
L(s) = 1 | + (−0.797 + 1.74i)2-s + (−0.959 − 0.281i)3-s + (−1.75 − 2.02i)4-s + (0.841 − 0.540i)5-s + (1.25 − 1.45i)6-s + (3.09 − 0.909i)8-s + (0.841 + 0.540i)9-s + (0.273 + 1.89i)10-s + (1.11 + 2.44i)12-s + (−0.959 + 0.281i)15-s + (−0.500 + 3.47i)16-s + (0.857 − 0.989i)17-s + (−1.61 + 1.03i)18-s + (0.186 + 0.215i)19-s + (−2.57 − 0.755i)20-s + ⋯ |
Λ(s)=(=(345s/2ΓC(s)L(s)(0.392−0.919i)Λ(1−s)
Λ(s)=(=(345s/2ΓC(s)L(s)(0.392−0.919i)Λ(1−s)
Degree: |
2 |
Conductor: |
345
= 3⋅5⋅23
|
Sign: |
0.392−0.919i
|
Analytic conductor: |
0.172177 |
Root analytic conductor: |
0.414942 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ345(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 345, ( :0), 0.392−0.919i)
|
Particular Values
L(21) |
≈ |
0.4441961962 |
L(21) |
≈ |
0.4441961962 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.959+0.281i)T |
| 5 | 1+(−0.841+0.540i)T |
| 23 | 1+(−0.415−0.909i)T |
good | 2 | 1+(0.797−1.74i)T+(−0.654−0.755i)T2 |
| 7 | 1+(0.959+0.281i)T2 |
| 11 | 1+(0.654−0.755i)T2 |
| 13 | 1+(0.959−0.281i)T2 |
| 17 | 1+(−0.857+0.989i)T+(−0.142−0.989i)T2 |
| 19 | 1+(−0.186−0.215i)T+(−0.142+0.989i)T2 |
| 29 | 1+(0.142+0.989i)T2 |
| 31 | 1+(−0.273+0.0801i)T+(0.841−0.540i)T2 |
| 37 | 1+(−0.415−0.909i)T2 |
| 41 | 1+(−0.415+0.909i)T2 |
| 43 | 1+(−0.841−0.540i)T2 |
| 47 | 1−0.830T+T2 |
| 53 | 1+(0.118−0.822i)T+(−0.959−0.281i)T2 |
| 59 | 1+(0.959−0.281i)T2 |
| 61 | 1+(0.797−0.234i)T+(0.841−0.540i)T2 |
| 67 | 1+(0.654+0.755i)T2 |
| 71 | 1+(0.654+0.755i)T2 |
| 73 | 1+(0.142−0.989i)T2 |
| 79 | 1+(0.239+1.66i)T+(−0.959+0.281i)T2 |
| 83 | 1+(1.61+1.03i)T+(0.415+0.909i)T2 |
| 89 | 1+(−0.841−0.540i)T2 |
| 97 | 1+(−0.415+0.909i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.91089065759182426988354114824, −10.54961406989724961272142724406, −9.764595797492933284693129556603, −9.096118387094815778649703111029, −7.87399618298587003716072794061, −7.12876864929447214911294639144, −6.11542446581340811521417616236, −5.46272047483734989227850091498, −4.70853200876993286001993447405, −1.23386469457785985176323931721,
1.46459226336072092376792273284, 2.93522196579340408021302567228, 4.17102270130317430548406875996, 5.45391537050398861032702333170, 6.81838041435685354096406553739, 8.188313847907576118045191991167, 9.366145756786886366382605886330, 10.00029626495290873643209817560, 10.68446215545145526478523557791, 11.21942454144155133550407183043