Properties

Label 345.1.p.a
Level 345345
Weight 11
Character orbit 345.p
Analytic conductor 0.1720.172
Analytic rank 00
Dimension 1010
Projective image D11D_{11}
CM discriminant -15
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [345,1,Mod(29,345)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(345, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 11, 18]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("345.29");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 345=3523 345 = 3 \cdot 5 \cdot 23
Weight: k k == 1 1
Character orbit: [χ][\chi] == 345.p (of order 2222, degree 1010, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.1721774293580.172177429358
Analytic rank: 00
Dimension: 1010
Coefficient field: Q(ζ22)\Q(\zeta_{22})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x10x9+x8x7+x6x5+x4x3+x2x+1 x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D11D_{11}
Projective field: Galois closure of Q[x]/(x11)\mathbb{Q}[x]/(x^{11} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(ζ225ζ223)q2+ζ2210q3+(ζ2210++ζ226)q4+ζ222q5+(ζ224+ζ222)q6+(ζ229+ζ224++1)q8++(ζ224+ζ222)q98+O(q100) q + ( - \zeta_{22}^{5} - \zeta_{22}^{3}) q^{2} + \zeta_{22}^{10} q^{3} + (\zeta_{22}^{10} + \cdots + \zeta_{22}^{6}) q^{4} + \zeta_{22}^{2} q^{5} + (\zeta_{22}^{4} + \zeta_{22}^{2}) q^{6} + ( - \zeta_{22}^{9} + \zeta_{22}^{4} + \cdots + 1) q^{8}+ \cdots + (\zeta_{22}^{4} + \zeta_{22}^{2}) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q2q2q33q4q52q6+7q8q92q103q12q155q16+9q172q182q193q20q234q24q25q272q30+2q98+O(q100) 10 q - 2 q^{2} - q^{3} - 3 q^{4} - q^{5} - 2 q^{6} + 7 q^{8} - q^{9} - 2 q^{10} - 3 q^{12} - q^{15} - 5 q^{16} + 9 q^{17} - 2 q^{18} - 2 q^{19} - 3 q^{20} - q^{23} - 4 q^{24} - q^{25} - q^{27} - 2 q^{30}+ \cdots - 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/345Z)×\left(\mathbb{Z}/345\mathbb{Z}\right)^\times.

nn 116116 166166 277277
χ(n)\chi(n) 1-1 ζ224\zeta_{22}^{4} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
29.1
0.959493 0.281733i
−0.841254 + 0.540641i
0.142315 + 0.989821i
0.959493 + 0.281733i
−0.415415 0.909632i
0.654861 + 0.755750i
0.142315 0.989821i
0.654861 0.755750i
−0.841254 0.540641i
−0.415415 + 0.909632i
−0.797176 + 1.74557i −0.959493 0.281733i −1.75667 2.02730i 0.841254 0.540641i 1.25667 1.45027i 0 3.09792 0.909632i 0.841254 + 0.540641i 0.273100 + 1.89945i
59.1 −1.10181 1.27155i 0.841254 + 0.540641i −0.260554 + 1.81219i 0.415415 0.909632i −0.239446 1.66538i 0 1.17597 0.755750i 0.415415 + 0.909632i −1.61435 + 0.474017i
104.1 −0.239446 + 0.153882i −0.142315 + 0.989821i −0.381761 + 0.835939i −0.959493 + 0.281733i −0.118239 0.258908i 0 −0.0777324 0.540641i −0.959493 0.281733i 0.186393 0.215109i
119.1 −0.797176 1.74557i −0.959493 + 0.281733i −1.75667 + 2.02730i 0.841254 + 0.540641i 1.25667 + 1.45027i 0 3.09792 + 0.909632i 0.841254 0.540641i 0.273100 1.89945i
164.1 −0.118239 0.822373i 0.415415 0.909632i 0.297176 0.0872586i −0.654861 + 0.755750i −0.797176 0.234072i 0 −0.452036 0.989821i −0.654861 0.755750i 0.698939 + 0.449181i
179.1 1.25667 + 0.368991i −0.654861 + 0.755750i 0.601808 + 0.386758i −0.142315 + 0.989821i −1.10181 + 0.708089i 0 −0.244123 0.281733i −0.142315 0.989821i −0.544078 + 1.19136i
209.1 −0.239446 0.153882i −0.142315 0.989821i −0.381761 0.835939i −0.959493 0.281733i −0.118239 + 0.258908i 0 −0.0777324 + 0.540641i −0.959493 + 0.281733i 0.186393 + 0.215109i
239.1 1.25667 0.368991i −0.654861 0.755750i 0.601808 0.386758i −0.142315 0.989821i −1.10181 0.708089i 0 −0.244123 + 0.281733i −0.142315 + 0.989821i −0.544078 1.19136i
269.1 −1.10181 + 1.27155i 0.841254 0.540641i −0.260554 1.81219i 0.415415 + 0.909632i −0.239446 + 1.66538i 0 1.17597 + 0.755750i 0.415415 0.909632i −1.61435 0.474017i
284.1 −0.118239 + 0.822373i 0.415415 + 0.909632i 0.297176 + 0.0872586i −0.654861 0.755750i −0.797176 + 0.234072i 0 −0.452036 + 0.989821i −0.654861 + 0.755750i 0.698939 0.449181i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 29.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by Q(15)\Q(\sqrt{-15})
23.c even 11 1 inner
345.p odd 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 345.1.p.a 10
3.b odd 2 1 345.1.p.b yes 10
5.b even 2 1 345.1.p.b yes 10
5.c odd 4 2 1725.1.bc.a 20
15.d odd 2 1 CM 345.1.p.a 10
15.e even 4 2 1725.1.bc.a 20
23.c even 11 1 inner 345.1.p.a 10
69.h odd 22 1 345.1.p.b yes 10
115.j even 22 1 345.1.p.b yes 10
115.k odd 44 2 1725.1.bc.a 20
345.p odd 22 1 inner 345.1.p.a 10
345.x even 44 2 1725.1.bc.a 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
345.1.p.a 10 1.a even 1 1 trivial
345.1.p.a 10 15.d odd 2 1 CM
345.1.p.a 10 23.c even 11 1 inner
345.1.p.a 10 345.p odd 22 1 inner
345.1.p.b yes 10 3.b odd 2 1
345.1.p.b yes 10 5.b even 2 1
345.1.p.b yes 10 69.h odd 22 1
345.1.p.b yes 10 115.j even 22 1
1725.1.bc.a 20 5.c odd 4 2
1725.1.bc.a 20 15.e even 4 2
1725.1.bc.a 20 115.k odd 44 2
1725.1.bc.a 20 345.x even 44 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T210+2T29+4T283T276T2612T25+9T24+7T23+14T22+6T2+1 T_{2}^{10} + 2T_{2}^{9} + 4T_{2}^{8} - 3T_{2}^{7} - 6T_{2}^{6} - 12T_{2}^{5} + 9T_{2}^{4} + 7T_{2}^{3} + 14T_{2}^{2} + 6T_{2} + 1 acting on S1new(345,[χ])S_{1}^{\mathrm{new}}(345, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
33 T10+T9++1 T^{10} + T^{9} + \cdots + 1 Copy content Toggle raw display
55 T10+T9++1 T^{10} + T^{9} + \cdots + 1 Copy content Toggle raw display
77 T10 T^{10} Copy content Toggle raw display
1111 T10 T^{10} Copy content Toggle raw display
1313 T10 T^{10} Copy content Toggle raw display
1717 T109T9++1 T^{10} - 9 T^{9} + \cdots + 1 Copy content Toggle raw display
1919 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
2323 T10+T9++1 T^{10} + T^{9} + \cdots + 1 Copy content Toggle raw display
2929 T10 T^{10} Copy content Toggle raw display
3131 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
3737 T10 T^{10} Copy content Toggle raw display
4141 T10 T^{10} Copy content Toggle raw display
4343 T10 T^{10} Copy content Toggle raw display
4747 (T5+T44T3++1)2 (T^{5} + T^{4} - 4 T^{3} + \cdots + 1)^{2} Copy content Toggle raw display
5353 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
5959 T10 T^{10} Copy content Toggle raw display
6161 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
6767 T10 T^{10} Copy content Toggle raw display
7171 T10 T^{10} Copy content Toggle raw display
7373 T10 T^{10} Copy content Toggle raw display
7979 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
8383 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
8989 T10 T^{10} Copy content Toggle raw display
9797 T10 T^{10} Copy content Toggle raw display
show more
show less