Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [345,1,Mod(29,345)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(345, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([11, 11, 18]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("345.29");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 345.p (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 |
|
−0.797176 | + | 1.74557i | −0.959493 | − | 0.281733i | −1.75667 | − | 2.02730i | 0.841254 | − | 0.540641i | 1.25667 | − | 1.45027i | 0 | 3.09792 | − | 0.909632i | 0.841254 | + | 0.540641i | 0.273100 | + | 1.89945i | ||||||||||||||||||||||||||||||||
59.1 | −1.10181 | − | 1.27155i | 0.841254 | + | 0.540641i | −0.260554 | + | 1.81219i | 0.415415 | − | 0.909632i | −0.239446 | − | 1.66538i | 0 | 1.17597 | − | 0.755750i | 0.415415 | + | 0.909632i | −1.61435 | + | 0.474017i | |||||||||||||||||||||||||||||||||
104.1 | −0.239446 | + | 0.153882i | −0.142315 | + | 0.989821i | −0.381761 | + | 0.835939i | −0.959493 | + | 0.281733i | −0.118239 | − | 0.258908i | 0 | −0.0777324 | − | 0.540641i | −0.959493 | − | 0.281733i | 0.186393 | − | 0.215109i | |||||||||||||||||||||||||||||||||
119.1 | −0.797176 | − | 1.74557i | −0.959493 | + | 0.281733i | −1.75667 | + | 2.02730i | 0.841254 | + | 0.540641i | 1.25667 | + | 1.45027i | 0 | 3.09792 | + | 0.909632i | 0.841254 | − | 0.540641i | 0.273100 | − | 1.89945i | |||||||||||||||||||||||||||||||||
164.1 | −0.118239 | − | 0.822373i | 0.415415 | − | 0.909632i | 0.297176 | − | 0.0872586i | −0.654861 | + | 0.755750i | −0.797176 | − | 0.234072i | 0 | −0.452036 | − | 0.989821i | −0.654861 | − | 0.755750i | 0.698939 | + | 0.449181i | |||||||||||||||||||||||||||||||||
179.1 | 1.25667 | + | 0.368991i | −0.654861 | + | 0.755750i | 0.601808 | + | 0.386758i | −0.142315 | + | 0.989821i | −1.10181 | + | 0.708089i | 0 | −0.244123 | − | 0.281733i | −0.142315 | − | 0.989821i | −0.544078 | + | 1.19136i | |||||||||||||||||||||||||||||||||
209.1 | −0.239446 | − | 0.153882i | −0.142315 | − | 0.989821i | −0.381761 | − | 0.835939i | −0.959493 | − | 0.281733i | −0.118239 | + | 0.258908i | 0 | −0.0777324 | + | 0.540641i | −0.959493 | + | 0.281733i | 0.186393 | + | 0.215109i | |||||||||||||||||||||||||||||||||
239.1 | 1.25667 | − | 0.368991i | −0.654861 | − | 0.755750i | 0.601808 | − | 0.386758i | −0.142315 | − | 0.989821i | −1.10181 | − | 0.708089i | 0 | −0.244123 | + | 0.281733i | −0.142315 | + | 0.989821i | −0.544078 | − | 1.19136i | |||||||||||||||||||||||||||||||||
269.1 | −1.10181 | + | 1.27155i | 0.841254 | − | 0.540641i | −0.260554 | − | 1.81219i | 0.415415 | + | 0.909632i | −0.239446 | + | 1.66538i | 0 | 1.17597 | + | 0.755750i | 0.415415 | − | 0.909632i | −1.61435 | − | 0.474017i | |||||||||||||||||||||||||||||||||
284.1 | −0.118239 | + | 0.822373i | 0.415415 | + | 0.909632i | 0.297176 | + | 0.0872586i | −0.654861 | − | 0.755750i | −0.797176 | + | 0.234072i | 0 | −0.452036 | + | 0.989821i | −0.654861 | + | 0.755750i | 0.698939 | − | 0.449181i | |||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
15.d | odd | 2 | 1 | CM by |
23.c | even | 11 | 1 | inner |
345.p | odd | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 345.1.p.a | ✓ | 10 |
3.b | odd | 2 | 1 | 345.1.p.b | yes | 10 | |
5.b | even | 2 | 1 | 345.1.p.b | yes | 10 | |
5.c | odd | 4 | 2 | 1725.1.bc.a | 20 | ||
15.d | odd | 2 | 1 | CM | 345.1.p.a | ✓ | 10 |
15.e | even | 4 | 2 | 1725.1.bc.a | 20 | ||
23.c | even | 11 | 1 | inner | 345.1.p.a | ✓ | 10 |
69.h | odd | 22 | 1 | 345.1.p.b | yes | 10 | |
115.j | even | 22 | 1 | 345.1.p.b | yes | 10 | |
115.k | odd | 44 | 2 | 1725.1.bc.a | 20 | ||
345.p | odd | 22 | 1 | inner | 345.1.p.a | ✓ | 10 |
345.x | even | 44 | 2 | 1725.1.bc.a | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
345.1.p.a | ✓ | 10 | 1.a | even | 1 | 1 | trivial |
345.1.p.a | ✓ | 10 | 15.d | odd | 2 | 1 | CM |
345.1.p.a | ✓ | 10 | 23.c | even | 11 | 1 | inner |
345.1.p.a | ✓ | 10 | 345.p | odd | 22 | 1 | inner |
345.1.p.b | yes | 10 | 3.b | odd | 2 | 1 | |
345.1.p.b | yes | 10 | 5.b | even | 2 | 1 | |
345.1.p.b | yes | 10 | 69.h | odd | 22 | 1 | |
345.1.p.b | yes | 10 | 115.j | even | 22 | 1 | |
1725.1.bc.a | 20 | 5.c | odd | 4 | 2 | ||
1725.1.bc.a | 20 | 15.e | even | 4 | 2 | ||
1725.1.bc.a | 20 | 115.k | odd | 44 | 2 | ||
1725.1.bc.a | 20 | 345.x | even | 44 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .