Properties

Label 345.1.p.a
Level $345$
Weight $1$
Character orbit 345.p
Analytic conductor $0.172$
Analytic rank $0$
Dimension $10$
Projective image $D_{11}$
CM discriminant -15
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [345,1,Mod(29,345)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(345, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 11, 18]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("345.29");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 345 = 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 345.p (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.172177429358\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{11}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{11} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{22}^{5} - \zeta_{22}^{3}) q^{2} + \zeta_{22}^{10} q^{3} + (\zeta_{22}^{10} + \cdots + \zeta_{22}^{6}) q^{4} + \zeta_{22}^{2} q^{5} + (\zeta_{22}^{4} + \zeta_{22}^{2}) q^{6} + ( - \zeta_{22}^{9} + \zeta_{22}^{4} + \cdots + 1) q^{8}+ \cdots + (\zeta_{22}^{4} + \zeta_{22}^{2}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{2} - q^{3} - 3 q^{4} - q^{5} - 2 q^{6} + 7 q^{8} - q^{9} - 2 q^{10} - 3 q^{12} - q^{15} - 5 q^{16} + 9 q^{17} - 2 q^{18} - 2 q^{19} - 3 q^{20} - q^{23} - 4 q^{24} - q^{25} - q^{27} - 2 q^{30}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/345\mathbb{Z}\right)^\times\).

\(n\) \(116\) \(166\) \(277\)
\(\chi(n)\) \(-1\) \(\zeta_{22}^{4}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
29.1
0.959493 0.281733i
−0.841254 + 0.540641i
0.142315 + 0.989821i
0.959493 + 0.281733i
−0.415415 0.909632i
0.654861 + 0.755750i
0.142315 0.989821i
0.654861 0.755750i
−0.841254 0.540641i
−0.415415 + 0.909632i
−0.797176 + 1.74557i −0.959493 0.281733i −1.75667 2.02730i 0.841254 0.540641i 1.25667 1.45027i 0 3.09792 0.909632i 0.841254 + 0.540641i 0.273100 + 1.89945i
59.1 −1.10181 1.27155i 0.841254 + 0.540641i −0.260554 + 1.81219i 0.415415 0.909632i −0.239446 1.66538i 0 1.17597 0.755750i 0.415415 + 0.909632i −1.61435 + 0.474017i
104.1 −0.239446 + 0.153882i −0.142315 + 0.989821i −0.381761 + 0.835939i −0.959493 + 0.281733i −0.118239 0.258908i 0 −0.0777324 0.540641i −0.959493 0.281733i 0.186393 0.215109i
119.1 −0.797176 1.74557i −0.959493 + 0.281733i −1.75667 + 2.02730i 0.841254 + 0.540641i 1.25667 + 1.45027i 0 3.09792 + 0.909632i 0.841254 0.540641i 0.273100 1.89945i
164.1 −0.118239 0.822373i 0.415415 0.909632i 0.297176 0.0872586i −0.654861 + 0.755750i −0.797176 0.234072i 0 −0.452036 0.989821i −0.654861 0.755750i 0.698939 + 0.449181i
179.1 1.25667 + 0.368991i −0.654861 + 0.755750i 0.601808 + 0.386758i −0.142315 + 0.989821i −1.10181 + 0.708089i 0 −0.244123 0.281733i −0.142315 0.989821i −0.544078 + 1.19136i
209.1 −0.239446 0.153882i −0.142315 0.989821i −0.381761 0.835939i −0.959493 0.281733i −0.118239 + 0.258908i 0 −0.0777324 + 0.540641i −0.959493 + 0.281733i 0.186393 + 0.215109i
239.1 1.25667 0.368991i −0.654861 0.755750i 0.601808 0.386758i −0.142315 0.989821i −1.10181 0.708089i 0 −0.244123 + 0.281733i −0.142315 + 0.989821i −0.544078 1.19136i
269.1 −1.10181 + 1.27155i 0.841254 0.540641i −0.260554 1.81219i 0.415415 + 0.909632i −0.239446 + 1.66538i 0 1.17597 + 0.755750i 0.415415 0.909632i −1.61435 0.474017i
284.1 −0.118239 + 0.822373i 0.415415 + 0.909632i 0.297176 + 0.0872586i −0.654861 0.755750i −0.797176 + 0.234072i 0 −0.452036 + 0.989821i −0.654861 + 0.755750i 0.698939 0.449181i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 29.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
23.c even 11 1 inner
345.p odd 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 345.1.p.a 10
3.b odd 2 1 345.1.p.b yes 10
5.b even 2 1 345.1.p.b yes 10
5.c odd 4 2 1725.1.bc.a 20
15.d odd 2 1 CM 345.1.p.a 10
15.e even 4 2 1725.1.bc.a 20
23.c even 11 1 inner 345.1.p.a 10
69.h odd 22 1 345.1.p.b yes 10
115.j even 22 1 345.1.p.b yes 10
115.k odd 44 2 1725.1.bc.a 20
345.p odd 22 1 inner 345.1.p.a 10
345.x even 44 2 1725.1.bc.a 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
345.1.p.a 10 1.a even 1 1 trivial
345.1.p.a 10 15.d odd 2 1 CM
345.1.p.a 10 23.c even 11 1 inner
345.1.p.a 10 345.p odd 22 1 inner
345.1.p.b yes 10 3.b odd 2 1
345.1.p.b yes 10 5.b even 2 1
345.1.p.b yes 10 69.h odd 22 1
345.1.p.b yes 10 115.j even 22 1
1725.1.bc.a 20 5.c odd 4 2
1725.1.bc.a 20 15.e even 4 2
1725.1.bc.a 20 115.k odd 44 2
1725.1.bc.a 20 345.x even 44 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{10} + 2T_{2}^{9} + 4T_{2}^{8} - 3T_{2}^{7} - 6T_{2}^{6} - 12T_{2}^{5} + 9T_{2}^{4} + 7T_{2}^{3} + 14T_{2}^{2} + 6T_{2} + 1 \) acting on \(S_{1}^{\mathrm{new}}(345, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{10} + T^{9} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{10} + T^{9} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{10} \) Copy content Toggle raw display
$11$ \( T^{10} \) Copy content Toggle raw display
$13$ \( T^{10} \) Copy content Toggle raw display
$17$ \( T^{10} - 9 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{10} + T^{9} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{10} \) Copy content Toggle raw display
$31$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( T^{10} \) Copy content Toggle raw display
$41$ \( T^{10} \) Copy content Toggle raw display
$43$ \( T^{10} \) Copy content Toggle raw display
$47$ \( (T^{5} + T^{4} - 4 T^{3} + \cdots + 1)^{2} \) Copy content Toggle raw display
$53$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{10} \) Copy content Toggle raw display
$61$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{10} \) Copy content Toggle raw display
$71$ \( T^{10} \) Copy content Toggle raw display
$73$ \( T^{10} \) Copy content Toggle raw display
$79$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$89$ \( T^{10} \) Copy content Toggle raw display
$97$ \( T^{10} \) Copy content Toggle raw display
show more
show less