L(s) = 1 | − 2-s − 2.44·3-s + 4-s + 2.44·6-s − 7-s − 8-s + 2.99·9-s − 4.89·11-s − 2.44·12-s + 4.44·13-s + 14-s + 16-s + 2·17-s − 2.99·18-s + 1.55·19-s + 2.44·21-s + 4.89·22-s + 2.89·23-s + 2.44·24-s − 4.44·26-s − 28-s + 6.89·29-s + 8.89·31-s − 32-s + 11.9·33-s − 2·34-s + 2.99·36-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.41·3-s + 0.5·4-s + 0.999·6-s − 0.377·7-s − 0.353·8-s + 0.999·9-s − 1.47·11-s − 0.707·12-s + 1.23·13-s + 0.267·14-s + 0.250·16-s + 0.485·17-s − 0.707·18-s + 0.355·19-s + 0.534·21-s + 1.04·22-s + 0.604·23-s + 0.499·24-s − 0.872·26-s − 0.188·28-s + 1.28·29-s + 1.59·31-s − 0.176·32-s + 2.08·33-s − 0.342·34-s + 0.499·36-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(350s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.5320010333 |
L(21) |
≈ |
0.5320010333 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 5 | 1 |
| 7 | 1+T |
good | 3 | 1+2.44T+3T2 |
| 11 | 1+4.89T+11T2 |
| 13 | 1−4.44T+13T2 |
| 17 | 1−2T+17T2 |
| 19 | 1−1.55T+19T2 |
| 23 | 1−2.89T+23T2 |
| 29 | 1−6.89T+29T2 |
| 31 | 1−8.89T+31T2 |
| 37 | 1−2T+37T2 |
| 41 | 1+1.10T+41T2 |
| 43 | 1+0.898T+43T2 |
| 47 | 1−8.89T+47T2 |
| 53 | 1+10.8T+53T2 |
| 59 | 1+1.55T+59T2 |
| 61 | 1−3.55T+61T2 |
| 67 | 1+8T+67T2 |
| 71 | 1+1.10T+71T2 |
| 73 | 1−2.89T+73T2 |
| 79 | 1−6.89T+79T2 |
| 83 | 1+2.44T+83T2 |
| 89 | 1+10T+89T2 |
| 97 | 1−15.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.29554923076180718025028882069, −10.55325367837767017951933665498, −10.01439033783112463655606599604, −8.664179296918683319137492382330, −7.70971377206101767237854140637, −6.53697423851433080849603310003, −5.83104606741587686350813742208, −4.80557649010691109432273744906, −2.97562386654069150960632236205, −0.862503666228635144429925468519,
0.862503666228635144429925468519, 2.97562386654069150960632236205, 4.80557649010691109432273744906, 5.83104606741587686350813742208, 6.53697423851433080849603310003, 7.70971377206101767237854140637, 8.664179296918683319137492382330, 10.01439033783112463655606599604, 10.55325367837767017951933665498, 11.29554923076180718025028882069