Properties

Label 350.2.a.g
Level $350$
Weight $2$
Character orbit 350.a
Self dual yes
Analytic conductor $2.795$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,2,Mod(1,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.79476407074\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + \beta q^{3} + q^{4} - \beta q^{6} - q^{7} - q^{8} + 3 q^{9} + 2 \beta q^{11} + \beta q^{12} + ( - \beta + 2) q^{13} + q^{14} + q^{16} + 2 q^{17} - 3 q^{18} + (\beta + 4) q^{19} - \beta q^{21} + \cdots + 6 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{7} - 2 q^{8} + 6 q^{9} + 4 q^{13} + 2 q^{14} + 2 q^{16} + 4 q^{17} - 6 q^{18} + 8 q^{19} - 4 q^{23} - 4 q^{26} - 2 q^{28} + 4 q^{29} + 8 q^{31} - 2 q^{32} + 24 q^{33} - 4 q^{34}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.44949
2.44949
−1.00000 −2.44949 1.00000 0 2.44949 −1.00000 −1.00000 3.00000 0
1.2 −1.00000 2.44949 1.00000 0 −2.44949 −1.00000 −1.00000 3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.2.a.g 2
3.b odd 2 1 3150.2.a.bt 2
4.b odd 2 1 2800.2.a.bm 2
5.b even 2 1 350.2.a.h 2
5.c odd 4 2 70.2.c.a 4
7.b odd 2 1 2450.2.a.bl 2
15.d odd 2 1 3150.2.a.bs 2
15.e even 4 2 630.2.g.g 4
20.d odd 2 1 2800.2.a.bl 2
20.e even 4 2 560.2.g.e 4
35.c odd 2 1 2450.2.a.bq 2
35.f even 4 2 490.2.c.e 4
35.k even 12 4 490.2.i.f 8
35.l odd 12 4 490.2.i.c 8
40.i odd 4 2 2240.2.g.j 4
40.k even 4 2 2240.2.g.i 4
60.l odd 4 2 5040.2.t.t 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.c.a 4 5.c odd 4 2
350.2.a.g 2 1.a even 1 1 trivial
350.2.a.h 2 5.b even 2 1
490.2.c.e 4 35.f even 4 2
490.2.i.c 8 35.l odd 12 4
490.2.i.f 8 35.k even 12 4
560.2.g.e 4 20.e even 4 2
630.2.g.g 4 15.e even 4 2
2240.2.g.i 4 40.k even 4 2
2240.2.g.j 4 40.i odd 4 2
2450.2.a.bl 2 7.b odd 2 1
2450.2.a.bq 2 35.c odd 2 1
2800.2.a.bl 2 20.d odd 2 1
2800.2.a.bm 2 4.b odd 2 1
3150.2.a.bs 2 15.d odd 2 1
3150.2.a.bt 2 3.b odd 2 1
5040.2.t.t 4 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(350))\):

\( T_{3}^{2} - 6 \) Copy content Toggle raw display
\( T_{13}^{2} - 4T_{13} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 6 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 24 \) Copy content Toggle raw display
$13$ \( T^{2} - 4T - 2 \) Copy content Toggle raw display
$17$ \( (T - 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 8T + 10 \) Copy content Toggle raw display
$23$ \( T^{2} + 4T - 20 \) Copy content Toggle raw display
$29$ \( T^{2} - 4T - 20 \) Copy content Toggle raw display
$31$ \( T^{2} - 8T - 8 \) Copy content Toggle raw display
$37$ \( (T - 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 12T + 12 \) Copy content Toggle raw display
$43$ \( T^{2} - 8T - 8 \) Copy content Toggle raw display
$47$ \( T^{2} - 8T - 8 \) Copy content Toggle raw display
$53$ \( T^{2} + 12T + 12 \) Copy content Toggle raw display
$59$ \( T^{2} + 8T + 10 \) Copy content Toggle raw display
$61$ \( T^{2} - 12T + 30 \) Copy content Toggle raw display
$67$ \( (T + 8)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 12T + 12 \) Copy content Toggle raw display
$73$ \( T^{2} + 4T - 20 \) Copy content Toggle raw display
$79$ \( T^{2} - 4T - 20 \) Copy content Toggle raw display
$83$ \( T^{2} - 6 \) Copy content Toggle raw display
$89$ \( (T + 10)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 12T - 60 \) Copy content Toggle raw display
show more
show less