L(s) = 1 | + 2i·2-s − 3i·3-s − 4·4-s + 6·6-s + 7i·7-s − 8i·8-s + 18·9-s − 17·11-s + 12i·12-s − 81i·13-s − 14·14-s + 16·16-s + 91i·17-s + 36i·18-s − 102·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.577i·3-s − 0.5·4-s + 0.408·6-s + 0.377i·7-s − 0.353i·8-s + 0.666·9-s − 0.465·11-s + 0.288i·12-s − 1.72i·13-s − 0.267·14-s + 0.250·16-s + 1.29i·17-s + 0.471i·18-s − 1.23·19-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)(0.447+0.894i)Λ(4−s)
Λ(s)=(=(350s/2ΓC(s+3/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
350
= 2⋅52⋅7
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
20.6506 |
Root analytic conductor: |
4.54430 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ350(99,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 350, ( :3/2), 0.447+0.894i)
|
Particular Values
L(2) |
≈ |
1.327899124 |
L(21) |
≈ |
1.327899124 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2iT |
| 5 | 1 |
| 7 | 1−7iT |
good | 3 | 1+3iT−27T2 |
| 11 | 1+17T+1.33e3T2 |
| 13 | 1+81iT−2.19e3T2 |
| 17 | 1−91iT−4.91e3T2 |
| 19 | 1+102T+6.85e3T2 |
| 23 | 1+90iT−1.21e4T2 |
| 29 | 1−129T+2.43e4T2 |
| 31 | 1−116T+2.97e4T2 |
| 37 | 1+314iT−5.06e4T2 |
| 41 | 1+124T+6.89e4T2 |
| 43 | 1+434iT−7.95e4T2 |
| 47 | 1+497iT−1.03e5T2 |
| 53 | 1+584iT−1.48e5T2 |
| 59 | 1−332T+2.05e5T2 |
| 61 | 1−220T+2.26e5T2 |
| 67 | 1+384iT−3.00e5T2 |
| 71 | 1+664T+3.57e5T2 |
| 73 | 1−230iT−3.89e5T2 |
| 79 | 1+361T+4.93e5T2 |
| 83 | 1−1.17e3iT−5.71e5T2 |
| 89 | 1+40T+7.04e5T2 |
| 97 | 1−175iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.53733944730544680693454600320, −10.17854673533669318148578442753, −8.512137212124069104945325526275, −8.177000964108885115914933420210, −7.02864123599620133905285995885, −6.15215326550742097832947971474, −5.18887093482956099563357642590, −3.86648157111727698568618872245, −2.23422264810574348477291435214, −0.49097821067059405007372558968,
1.41548116007541528333977614715, 2.87608480210429984746953956274, 4.32249910981479415825078058819, 4.71695331950196216249684466903, 6.42831728315554137605693528732, 7.46075813183918820099287549608, 8.758281515806361199995495573082, 9.616651139737712384209593572268, 10.23074031385991962403494144818, 11.23060983851067093203376671653