L(s) = 1 | + 2i·2-s − 3i·3-s − 4·4-s + 6·6-s + 7i·7-s − 8i·8-s + 18·9-s − 17·11-s + 12i·12-s − 81i·13-s − 14·14-s + 16·16-s + 91i·17-s + 36i·18-s − 102·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.577i·3-s − 0.5·4-s + 0.408·6-s + 0.377i·7-s − 0.353i·8-s + 0.666·9-s − 0.465·11-s + 0.288i·12-s − 1.72i·13-s − 0.267·14-s + 0.250·16-s + 1.29i·17-s + 0.471i·18-s − 1.23·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.327899124\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.327899124\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 2iT \) |
| 5 | \( 1 \) |
| 7 | \( 1 - 7iT \) |
good | 3 | \( 1 + 3iT - 27T^{2} \) |
| 11 | \( 1 + 17T + 1.33e3T^{2} \) |
| 13 | \( 1 + 81iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 91iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 102T + 6.85e3T^{2} \) |
| 23 | \( 1 + 90iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 129T + 2.43e4T^{2} \) |
| 31 | \( 1 - 116T + 2.97e4T^{2} \) |
| 37 | \( 1 + 314iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 124T + 6.89e4T^{2} \) |
| 43 | \( 1 + 434iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 497iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 584iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 332T + 2.05e5T^{2} \) |
| 61 | \( 1 - 220T + 2.26e5T^{2} \) |
| 67 | \( 1 + 384iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 664T + 3.57e5T^{2} \) |
| 73 | \( 1 - 230iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 361T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.17e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 40T + 7.04e5T^{2} \) |
| 97 | \( 1 - 175iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.53733944730544680693454600320, −10.17854673533669318148578442753, −8.512137212124069104945325526275, −8.177000964108885115914933420210, −7.02864123599620133905285995885, −6.15215326550742097832947971474, −5.18887093482956099563357642590, −3.86648157111727698568618872245, −2.23422264810574348477291435214, −0.49097821067059405007372558968,
1.41548116007541528333977614715, 2.87608480210429984746953956274, 4.32249910981479415825078058819, 4.71695331950196216249684466903, 6.42831728315554137605693528732, 7.46075813183918820099287549608, 8.758281515806361199995495573082, 9.616651139737712384209593572268, 10.23074031385991962403494144818, 11.23060983851067093203376671653