Properties

Label 350.4.c.j
Level 350350
Weight 44
Character orbit 350.c
Analytic conductor 20.65120.651
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,4,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 350=2527 350 = 2 \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 350.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 20.650668502020.6506685020
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2iq2+3iq34q4+6q67iq7+8iq8+18q917q1112iq12+81iq1314q14+16q1691iq1736iq18102q19+21q21+34iq22+306q99+O(q100) q - 2 i q^{2} + 3 i q^{3} - 4 q^{4} + 6 q^{6} - 7 i q^{7} + 8 i q^{8} + 18 q^{9} - 17 q^{11} - 12 i q^{12} + 81 i q^{13} - 14 q^{14} + 16 q^{16} - 91 i q^{17} - 36 i q^{18} - 102 q^{19} + 21 q^{21} + 34 i q^{22} + \cdots - 306 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q4+12q6+36q934q1128q14+32q16204q19+42q2148q24+324q26+258q29+232q31364q34144q36486q39248q41+136q44+612q99+O(q100) 2 q - 8 q^{4} + 12 q^{6} + 36 q^{9} - 34 q^{11} - 28 q^{14} + 32 q^{16} - 204 q^{19} + 42 q^{21} - 48 q^{24} + 324 q^{26} + 258 q^{29} + 232 q^{31} - 364 q^{34} - 144 q^{36} - 486 q^{39} - 248 q^{41} + 136 q^{44}+ \cdots - 612 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/350Z)×\left(\mathbb{Z}/350\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
99.1
1.00000i
1.00000i
2.00000i 3.00000i −4.00000 0 6.00000 7.00000i 8.00000i 18.0000 0
99.2 2.00000i 3.00000i −4.00000 0 6.00000 7.00000i 8.00000i 18.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.4.c.j 2
5.b even 2 1 inner 350.4.c.j 2
5.c odd 4 1 70.4.a.b 1
5.c odd 4 1 350.4.a.t 1
15.e even 4 1 630.4.a.m 1
20.e even 4 1 560.4.a.k 1
35.f even 4 1 490.4.a.f 1
35.f even 4 1 2450.4.a.ba 1
35.k even 12 2 490.4.e.l 2
35.l odd 12 2 490.4.e.p 2
40.i odd 4 1 2240.4.a.w 1
40.k even 4 1 2240.4.a.p 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.4.a.b 1 5.c odd 4 1
350.4.a.t 1 5.c odd 4 1
350.4.c.j 2 1.a even 1 1 trivial
350.4.c.j 2 5.b even 2 1 inner
490.4.a.f 1 35.f even 4 1
490.4.e.l 2 35.k even 12 2
490.4.e.p 2 35.l odd 12 2
560.4.a.k 1 20.e even 4 1
630.4.a.m 1 15.e even 4 1
2240.4.a.p 1 40.k even 4 1
2240.4.a.w 1 40.i odd 4 1
2450.4.a.ba 1 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(350,[χ])S_{4}^{\mathrm{new}}(350, [\chi]):

T32+9 T_{3}^{2} + 9 Copy content Toggle raw display
T11+17 T_{11} + 17 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+4 T^{2} + 4 Copy content Toggle raw display
33 T2+9 T^{2} + 9 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+49 T^{2} + 49 Copy content Toggle raw display
1111 (T+17)2 (T + 17)^{2} Copy content Toggle raw display
1313 T2+6561 T^{2} + 6561 Copy content Toggle raw display
1717 T2+8281 T^{2} + 8281 Copy content Toggle raw display
1919 (T+102)2 (T + 102)^{2} Copy content Toggle raw display
2323 T2+8100 T^{2} + 8100 Copy content Toggle raw display
2929 (T129)2 (T - 129)^{2} Copy content Toggle raw display
3131 (T116)2 (T - 116)^{2} Copy content Toggle raw display
3737 T2+98596 T^{2} + 98596 Copy content Toggle raw display
4141 (T+124)2 (T + 124)^{2} Copy content Toggle raw display
4343 T2+188356 T^{2} + 188356 Copy content Toggle raw display
4747 T2+247009 T^{2} + 247009 Copy content Toggle raw display
5353 T2+341056 T^{2} + 341056 Copy content Toggle raw display
5959 (T332)2 (T - 332)^{2} Copy content Toggle raw display
6161 (T220)2 (T - 220)^{2} Copy content Toggle raw display
6767 T2+147456 T^{2} + 147456 Copy content Toggle raw display
7171 (T+664)2 (T + 664)^{2} Copy content Toggle raw display
7373 T2+52900 T^{2} + 52900 Copy content Toggle raw display
7979 (T+361)2 (T + 361)^{2} Copy content Toggle raw display
8383 T2+1373584 T^{2} + 1373584 Copy content Toggle raw display
8989 (T+40)2 (T + 40)^{2} Copy content Toggle raw display
9797 T2+30625 T^{2} + 30625 Copy content Toggle raw display
show more
show less