Properties

Label 350.4.c.j
Level $350$
Weight $4$
Character orbit 350.c
Analytic conductor $20.651$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,4,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.6506685020\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 i q^{2} + 3 i q^{3} - 4 q^{4} + 6 q^{6} - 7 i q^{7} + 8 i q^{8} + 18 q^{9} - 17 q^{11} - 12 i q^{12} + 81 i q^{13} - 14 q^{14} + 16 q^{16} - 91 i q^{17} - 36 i q^{18} - 102 q^{19} + 21 q^{21} + 34 i q^{22} + \cdots - 306 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} + 12 q^{6} + 36 q^{9} - 34 q^{11} - 28 q^{14} + 32 q^{16} - 204 q^{19} + 42 q^{21} - 48 q^{24} + 324 q^{26} + 258 q^{29} + 232 q^{31} - 364 q^{34} - 144 q^{36} - 486 q^{39} - 248 q^{41} + 136 q^{44}+ \cdots - 612 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
1.00000i
1.00000i
2.00000i 3.00000i −4.00000 0 6.00000 7.00000i 8.00000i 18.0000 0
99.2 2.00000i 3.00000i −4.00000 0 6.00000 7.00000i 8.00000i 18.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.4.c.j 2
5.b even 2 1 inner 350.4.c.j 2
5.c odd 4 1 70.4.a.b 1
5.c odd 4 1 350.4.a.t 1
15.e even 4 1 630.4.a.m 1
20.e even 4 1 560.4.a.k 1
35.f even 4 1 490.4.a.f 1
35.f even 4 1 2450.4.a.ba 1
35.k even 12 2 490.4.e.l 2
35.l odd 12 2 490.4.e.p 2
40.i odd 4 1 2240.4.a.w 1
40.k even 4 1 2240.4.a.p 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.4.a.b 1 5.c odd 4 1
350.4.a.t 1 5.c odd 4 1
350.4.c.j 2 1.a even 1 1 trivial
350.4.c.j 2 5.b even 2 1 inner
490.4.a.f 1 35.f even 4 1
490.4.e.l 2 35.k even 12 2
490.4.e.p 2 35.l odd 12 2
560.4.a.k 1 20.e even 4 1
630.4.a.m 1 15.e even 4 1
2240.4.a.p 1 40.k even 4 1
2240.4.a.w 1 40.i odd 4 1
2450.4.a.ba 1 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(350, [\chi])\):

\( T_{3}^{2} + 9 \) Copy content Toggle raw display
\( T_{11} + 17 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{2} + 9 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 49 \) Copy content Toggle raw display
$11$ \( (T + 17)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 6561 \) Copy content Toggle raw display
$17$ \( T^{2} + 8281 \) Copy content Toggle raw display
$19$ \( (T + 102)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 8100 \) Copy content Toggle raw display
$29$ \( (T - 129)^{2} \) Copy content Toggle raw display
$31$ \( (T - 116)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 98596 \) Copy content Toggle raw display
$41$ \( (T + 124)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 188356 \) Copy content Toggle raw display
$47$ \( T^{2} + 247009 \) Copy content Toggle raw display
$53$ \( T^{2} + 341056 \) Copy content Toggle raw display
$59$ \( (T - 332)^{2} \) Copy content Toggle raw display
$61$ \( (T - 220)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 147456 \) Copy content Toggle raw display
$71$ \( (T + 664)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 52900 \) Copy content Toggle raw display
$79$ \( (T + 361)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 1373584 \) Copy content Toggle raw display
$89$ \( (T + 40)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 30625 \) Copy content Toggle raw display
show more
show less