Properties

Label 2450.4.a.ba
Level 24502450
Weight 44
Character orbit 2450.a
Self dual yes
Analytic conductor 144.555144.555
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2450,4,Mod(1,2450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2450.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 2450=25272 2450 = 2 \cdot 5^{2} \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2450.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 144.554679514144.554679514
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 70)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2q23q3+4q46q6+8q818q917q1112q1281q13+16q1691q1736q18102q1934q22+90q2324q24162q26+135q27++306q99+O(q100) q + 2 q^{2} - 3 q^{3} + 4 q^{4} - 6 q^{6} + 8 q^{8} - 18 q^{9} - 17 q^{11} - 12 q^{12} - 81 q^{13} + 16 q^{16} - 91 q^{17} - 36 q^{18} - 102 q^{19} - 34 q^{22} + 90 q^{23} - 24 q^{24} - 162 q^{26} + 135 q^{27}+ \cdots + 306 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
2.00000 −3.00000 4.00000 0 −6.00000 0 8.00000 −18.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2450.4.a.ba 1
5.b even 2 1 490.4.a.f 1
7.b odd 2 1 350.4.a.t 1
35.c odd 2 1 70.4.a.b 1
35.f even 4 2 350.4.c.j 2
35.i odd 6 2 490.4.e.p 2
35.j even 6 2 490.4.e.l 2
105.g even 2 1 630.4.a.m 1
140.c even 2 1 560.4.a.k 1
280.c odd 2 1 2240.4.a.w 1
280.n even 2 1 2240.4.a.p 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.4.a.b 1 35.c odd 2 1
350.4.a.t 1 7.b odd 2 1
350.4.c.j 2 35.f even 4 2
490.4.a.f 1 5.b even 2 1
490.4.e.l 2 35.j even 6 2
490.4.e.p 2 35.i odd 6 2
560.4.a.k 1 140.c even 2 1
630.4.a.m 1 105.g even 2 1
2240.4.a.p 1 280.n even 2 1
2240.4.a.w 1 280.c odd 2 1
2450.4.a.ba 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(2450))S_{4}^{\mathrm{new}}(\Gamma_0(2450)):

T3+3 T_{3} + 3 Copy content Toggle raw display
T11+17 T_{11} + 17 Copy content Toggle raw display
T19+102 T_{19} + 102 Copy content Toggle raw display
T2390 T_{23} - 90 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T - 2 Copy content Toggle raw display
33 T+3 T + 3 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T+17 T + 17 Copy content Toggle raw display
1313 T+81 T + 81 Copy content Toggle raw display
1717 T+91 T + 91 Copy content Toggle raw display
1919 T+102 T + 102 Copy content Toggle raw display
2323 T90 T - 90 Copy content Toggle raw display
2929 T+129 T + 129 Copy content Toggle raw display
3131 T+116 T + 116 Copy content Toggle raw display
3737 T+314 T + 314 Copy content Toggle raw display
4141 T124 T - 124 Copy content Toggle raw display
4343 T434 T - 434 Copy content Toggle raw display
4747 T497 T - 497 Copy content Toggle raw display
5353 T584 T - 584 Copy content Toggle raw display
5959 T332 T - 332 Copy content Toggle raw display
6161 T+220 T + 220 Copy content Toggle raw display
6767 T+384 T + 384 Copy content Toggle raw display
7171 T+664 T + 664 Copy content Toggle raw display
7373 T230 T - 230 Copy content Toggle raw display
7979 T361 T - 361 Copy content Toggle raw display
8383 T1172 T - 1172 Copy content Toggle raw display
8989 T+40 T + 40 Copy content Toggle raw display
9797 T+175 T + 175 Copy content Toggle raw display
show more
show less