Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [490,4,Mod(361,490)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(490, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("490.361");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 490.e (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 70) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
361.1 |
|
1.00000 | + | 1.73205i | 1.50000 | − | 2.59808i | −2.00000 | + | 3.46410i | −2.50000 | − | 4.33013i | 6.00000 | 0 | −8.00000 | 9.00000 | + | 15.5885i | 5.00000 | − | 8.66025i | ||||||||||||
471.1 | 1.00000 | − | 1.73205i | 1.50000 | + | 2.59808i | −2.00000 | − | 3.46410i | −2.50000 | + | 4.33013i | 6.00000 | 0 | −8.00000 | 9.00000 | − | 15.5885i | 5.00000 | + | 8.66025i | |||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 490.4.e.p | 2 | |
7.b | odd | 2 | 1 | 490.4.e.l | 2 | ||
7.c | even | 3 | 1 | 70.4.a.b | ✓ | 1 | |
7.c | even | 3 | 1 | inner | 490.4.e.p | 2 | |
7.d | odd | 6 | 1 | 490.4.a.f | 1 | ||
7.d | odd | 6 | 1 | 490.4.e.l | 2 | ||
21.h | odd | 6 | 1 | 630.4.a.m | 1 | ||
28.g | odd | 6 | 1 | 560.4.a.k | 1 | ||
35.i | odd | 6 | 1 | 2450.4.a.ba | 1 | ||
35.j | even | 6 | 1 | 350.4.a.t | 1 | ||
35.l | odd | 12 | 2 | 350.4.c.j | 2 | ||
56.k | odd | 6 | 1 | 2240.4.a.p | 1 | ||
56.p | even | 6 | 1 | 2240.4.a.w | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
70.4.a.b | ✓ | 1 | 7.c | even | 3 | 1 | |
350.4.a.t | 1 | 35.j | even | 6 | 1 | ||
350.4.c.j | 2 | 35.l | odd | 12 | 2 | ||
490.4.a.f | 1 | 7.d | odd | 6 | 1 | ||
490.4.e.l | 2 | 7.b | odd | 2 | 1 | ||
490.4.e.l | 2 | 7.d | odd | 6 | 1 | ||
490.4.e.p | 2 | 1.a | even | 1 | 1 | trivial | |
490.4.e.p | 2 | 7.c | even | 3 | 1 | inner | |
560.4.a.k | 1 | 28.g | odd | 6 | 1 | ||
630.4.a.m | 1 | 21.h | odd | 6 | 1 | ||
2240.4.a.p | 1 | 56.k | odd | 6 | 1 | ||
2240.4.a.w | 1 | 56.p | even | 6 | 1 | ||
2450.4.a.ba | 1 | 35.i | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|