Properties

Label 490.4.e.p
Level 490490
Weight 44
Character orbit 490.e
Analytic conductor 28.91128.911
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [490,4,Mod(361,490)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(490, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("490.361");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 490=2572 490 = 2 \cdot 5 \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 490.e (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 28.910935902828.9109359028
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2ζ6q2+(3ζ6+3)q3+(4ζ64)q45ζ6q5+6q68q8+18ζ6q9+(10ζ6+10)q10+(17ζ6+17)q11++306q99+O(q100) q + 2 \zeta_{6} q^{2} + ( - 3 \zeta_{6} + 3) q^{3} + (4 \zeta_{6} - 4) q^{4} - 5 \zeta_{6} q^{5} + 6 q^{6} - 8 q^{8} + 18 \zeta_{6} q^{9} + ( - 10 \zeta_{6} + 10) q^{10} + ( - 17 \zeta_{6} + 17) q^{11} + \cdots + 306 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q2+3q34q45q5+12q616q8+18q9+10q10+17q11+12q12162q1330q1516q16+91q1736q18102q19+40q20+68q22++612q99+O(q100) 2 q + 2 q^{2} + 3 q^{3} - 4 q^{4} - 5 q^{5} + 12 q^{6} - 16 q^{8} + 18 q^{9} + 10 q^{10} + 17 q^{11} + 12 q^{12} - 162 q^{13} - 30 q^{15} - 16 q^{16} + 91 q^{17} - 36 q^{18} - 102 q^{19} + 40 q^{20} + 68 q^{22}+ \cdots + 612 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/490Z)×\left(\mathbb{Z}/490\mathbb{Z}\right)^\times.

nn 101101 197197
χ(n)\chi(n) ζ6-\zeta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
361.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 + 1.73205i 1.50000 2.59808i −2.00000 + 3.46410i −2.50000 4.33013i 6.00000 0 −8.00000 9.00000 + 15.5885i 5.00000 8.66025i
471.1 1.00000 1.73205i 1.50000 + 2.59808i −2.00000 3.46410i −2.50000 + 4.33013i 6.00000 0 −8.00000 9.00000 15.5885i 5.00000 + 8.66025i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.4.e.p 2
7.b odd 2 1 490.4.e.l 2
7.c even 3 1 70.4.a.b 1
7.c even 3 1 inner 490.4.e.p 2
7.d odd 6 1 490.4.a.f 1
7.d odd 6 1 490.4.e.l 2
21.h odd 6 1 630.4.a.m 1
28.g odd 6 1 560.4.a.k 1
35.i odd 6 1 2450.4.a.ba 1
35.j even 6 1 350.4.a.t 1
35.l odd 12 2 350.4.c.j 2
56.k odd 6 1 2240.4.a.p 1
56.p even 6 1 2240.4.a.w 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.4.a.b 1 7.c even 3 1
350.4.a.t 1 35.j even 6 1
350.4.c.j 2 35.l odd 12 2
490.4.a.f 1 7.d odd 6 1
490.4.e.l 2 7.b odd 2 1
490.4.e.l 2 7.d odd 6 1
490.4.e.p 2 1.a even 1 1 trivial
490.4.e.p 2 7.c even 3 1 inner
560.4.a.k 1 28.g odd 6 1
630.4.a.m 1 21.h odd 6 1
2240.4.a.p 1 56.k odd 6 1
2240.4.a.w 1 56.p even 6 1
2450.4.a.ba 1 35.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(490,[χ])S_{4}^{\mathrm{new}}(490, [\chi]):

T323T3+9 T_{3}^{2} - 3T_{3} + 9 Copy content Toggle raw display
T11217T11+289 T_{11}^{2} - 17T_{11} + 289 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
33 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
55 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T217T+289 T^{2} - 17T + 289 Copy content Toggle raw display
1313 (T+81)2 (T + 81)^{2} Copy content Toggle raw display
1717 T291T+8281 T^{2} - 91T + 8281 Copy content Toggle raw display
1919 T2+102T+10404 T^{2} + 102T + 10404 Copy content Toggle raw display
2323 T290T+8100 T^{2} - 90T + 8100 Copy content Toggle raw display
2929 (T+129)2 (T + 129)^{2} Copy content Toggle raw display
3131 T2+116T+13456 T^{2} + 116T + 13456 Copy content Toggle raw display
3737 T2+314T+98596 T^{2} + 314T + 98596 Copy content Toggle raw display
4141 (T+124)2 (T + 124)^{2} Copy content Toggle raw display
4343 (T+434)2 (T + 434)^{2} Copy content Toggle raw display
4747 T2+497T+247009 T^{2} + 497T + 247009 Copy content Toggle raw display
5353 T2584T+341056 T^{2} - 584T + 341056 Copy content Toggle raw display
5959 T2332T+110224 T^{2} - 332T + 110224 Copy content Toggle raw display
6161 T2+220T+48400 T^{2} + 220T + 48400 Copy content Toggle raw display
6767 T2+384T+147456 T^{2} + 384T + 147456 Copy content Toggle raw display
7171 (T+664)2 (T + 664)^{2} Copy content Toggle raw display
7373 T2+230T+52900 T^{2} + 230T + 52900 Copy content Toggle raw display
7979 T2+361T+130321 T^{2} + 361T + 130321 Copy content Toggle raw display
8383 (T1172)2 (T - 1172)^{2} Copy content Toggle raw display
8989 T2+40T+1600 T^{2} + 40T + 1600 Copy content Toggle raw display
9797 (T+175)2 (T + 175)^{2} Copy content Toggle raw display
show more
show less