L(s) = 1 | + (0.625 + 1.92i)3-s + (1.75 − 2.41i)5-s + (0.216 − 0.667i)7-s + (−0.888 + 0.645i)9-s + (2.75 − 1.85i)11-s + (2.50 − 1.82i)13-s + (5.73 + 1.86i)15-s + (−2.54 + 3.49i)17-s + (−4.99 + 1.62i)19-s + 1.42·21-s + 0.883i·23-s + (−1.19 − 3.68i)25-s + (3.11 + 2.26i)27-s + (−3.13 + 9.66i)29-s + (−4.71 − 6.48i)31-s + ⋯ |
L(s) = 1 | + (0.361 + 1.11i)3-s + (0.783 − 1.07i)5-s + (0.0819 − 0.252i)7-s + (−0.296 + 0.215i)9-s + (0.829 − 0.558i)11-s + (0.695 − 0.505i)13-s + (1.48 + 0.481i)15-s + (−0.616 + 0.848i)17-s + (−1.14 + 0.372i)19-s + 0.310·21-s + 0.184i·23-s + (−0.239 − 0.737i)25-s + (0.599 + 0.435i)27-s + (−0.583 + 1.79i)29-s + (−0.846 − 1.16i)31-s + ⋯ |
Λ(s)=(=(352s/2ΓC(s)L(s)(0.966−0.254i)Λ(2−s)
Λ(s)=(=(352s/2ΓC(s+1/2)L(s)(0.966−0.254i)Λ(1−s)
Degree: |
2 |
Conductor: |
352
= 25⋅11
|
Sign: |
0.966−0.254i
|
Analytic conductor: |
2.81073 |
Root analytic conductor: |
1.67652 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ352(239,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 352, ( :1/2), 0.966−0.254i)
|
Particular Values
L(1) |
≈ |
1.73755+0.225137i |
L(21) |
≈ |
1.73755+0.225137i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(−2.75+1.85i)T |
good | 3 | 1+(−0.625−1.92i)T+(−2.42+1.76i)T2 |
| 5 | 1+(−1.75+2.41i)T+(−1.54−4.75i)T2 |
| 7 | 1+(−0.216+0.667i)T+(−5.66−4.11i)T2 |
| 13 | 1+(−2.50+1.82i)T+(4.01−12.3i)T2 |
| 17 | 1+(2.54−3.49i)T+(−5.25−16.1i)T2 |
| 19 | 1+(4.99−1.62i)T+(15.3−11.1i)T2 |
| 23 | 1−0.883iT−23T2 |
| 29 | 1+(3.13−9.66i)T+(−23.4−17.0i)T2 |
| 31 | 1+(4.71+6.48i)T+(−9.57+29.4i)T2 |
| 37 | 1+(−2.84−0.924i)T+(29.9+21.7i)T2 |
| 41 | 1+(−2.79+0.906i)T+(33.1−24.0i)T2 |
| 43 | 1−2.57iT−43T2 |
| 47 | 1+(4.57−1.48i)T+(38.0−27.6i)T2 |
| 53 | 1+(7.22+9.94i)T+(−16.3+50.4i)T2 |
| 59 | 1+(−1.63+5.02i)T+(−47.7−34.6i)T2 |
| 61 | 1+(6.21+4.51i)T+(18.8+58.0i)T2 |
| 67 | 1−5.11T+67T2 |
| 71 | 1+(4.66−6.42i)T+(−21.9−67.5i)T2 |
| 73 | 1+(4.05+1.31i)T+(59.0+42.9i)T2 |
| 79 | 1+(−2.28+1.65i)T+(24.4−75.1i)T2 |
| 83 | 1+(−0.679+0.934i)T+(−25.6−78.9i)T2 |
| 89 | 1+9.59T+89T2 |
| 97 | 1+(−5.12+3.72i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.18100502914202855208399116357, −10.54989310477775856610883859033, −9.465329189986587773793941456075, −8.961349743521170157624431041098, −8.203791195402211713557395344469, −6.45907948155804718256140043234, −5.50972315383922853435973378770, −4.37386998652082777272479551527, −3.57187090523784214348679985546, −1.55570748409037766801217136484,
1.79848368273680931550693282686, 2.61896264132192363270788793994, 4.29992759771187308770980752143, 6.06845546696229875963809803602, 6.69977627972717519369523907722, 7.37643915467477048647960522106, 8.660225747443238524536072589089, 9.488867630987447717537945479207, 10.61392512375839290457841242160, 11.46420773750072091852846420065