L(s) = 1 | + (0.708 + 0.975i)3-s + (0.671 + 2.06i)5-s + (1.18 + 0.858i)7-s + (0.477 − 1.47i)9-s + (−3.29 + 0.371i)11-s + (5.50 + 1.78i)13-s + (−1.54 + 2.11i)15-s + (−2.83 + 0.921i)17-s + (−4.63 + 3.36i)19-s + 1.76i·21-s + 0.400i·23-s + (0.222 − 0.162i)25-s + (5.21 − 1.69i)27-s + (2.26 − 3.11i)29-s + (−1.41 − 0.460i)31-s + ⋯ |
L(s) = 1 | + (0.409 + 0.563i)3-s + (0.300 + 0.924i)5-s + (0.446 + 0.324i)7-s + (0.159 − 0.490i)9-s + (−0.993 + 0.112i)11-s + (1.52 + 0.496i)13-s + (−0.397 + 0.547i)15-s + (−0.688 + 0.223i)17-s + (−1.06 + 0.773i)19-s + 0.384i·21-s + 0.0834i·23-s + (0.0445 − 0.0324i)25-s + (1.00 − 0.325i)27-s + (0.419 − 0.577i)29-s + (−0.254 − 0.0827i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.371 - 0.928i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.371 - 0.928i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.34495 + 0.910221i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.34495 + 0.910221i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (3.29 - 0.371i)T \) |
good | 3 | \( 1 + (-0.708 - 0.975i)T + (-0.927 + 2.85i)T^{2} \) |
| 5 | \( 1 + (-0.671 - 2.06i)T + (-4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (-1.18 - 0.858i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (-5.50 - 1.78i)T + (10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (2.83 - 0.921i)T + (13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (4.63 - 3.36i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 - 0.400iT - 23T^{2} \) |
| 29 | \( 1 + (-2.26 + 3.11i)T + (-8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (1.41 + 0.460i)T + (25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-5.01 - 3.64i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (2.50 + 3.45i)T + (-12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 - 6.17T + 43T^{2} \) |
| 47 | \( 1 + (4.79 + 6.59i)T + (-14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (0.633 - 1.95i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (-7.19 + 9.90i)T + (-18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (12.4 - 4.04i)T + (49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + 2.72iT - 67T^{2} \) |
| 71 | \( 1 + (-9.62 + 3.12i)T + (57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-2.77 + 3.81i)T + (-22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (2.34 - 7.20i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (3.31 + 10.1i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 - 1.16T + 89T^{2} \) |
| 97 | \( 1 + (-5.15 + 15.8i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.36732863451861794502341115790, −10.66199751319597310528108271423, −9.956587215132374124696924203812, −8.804037303296103468998653629905, −8.151769769386247179846771222762, −6.70001748084125243998993024282, −5.98822870669951759100926882329, −4.47292318058643453576010630414, −3.42708608729147455232122641181, −2.13141761680469463215722684236,
1.24114898896623376475622490864, 2.63099320147368262214905205406, 4.38387248517427633075870587551, 5.30142271177874437391274195129, 6.54005063987887360482569394160, 7.78656902353057562155756131017, 8.409261940182769167529954320380, 9.161180032827287290618901254768, 10.71159209462170840084638606419, 10.99091276572895667942904519356