L(s) = 1 | + 3.25i·3-s + 5-s + 3.25·7-s − 7.62·9-s + (3.25 + 0.613i)11-s + 2i·13-s + 3.25i·15-s + 4.62i·17-s − 4.48·19-s + 10.6i·21-s + 1.22i·23-s + 25-s − 15.0i·27-s − 2.62i·29-s − 3.25i·31-s + ⋯ |
L(s) = 1 | + 1.88i·3-s + 0.447·5-s + 1.23·7-s − 2.54·9-s + (0.982 + 0.185i)11-s + 0.554i·13-s + 0.841i·15-s + 1.12i·17-s − 1.02·19-s + 2.31i·21-s + 0.255i·23-s + 0.200·25-s − 2.90i·27-s − 0.487i·29-s − 0.585i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.982 - 0.185i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.982 - 0.185i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.108483015\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.108483015\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 11 | \( 1 + (-3.25 - 0.613i)T \) |
good | 3 | \( 1 - 3.25iT - 3T^{2} \) |
| 7 | \( 1 - 3.25T + 7T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 17 | \( 1 - 4.62iT - 17T^{2} \) |
| 19 | \( 1 + 4.48T + 19T^{2} \) |
| 23 | \( 1 - 1.22iT - 23T^{2} \) |
| 29 | \( 1 + 2.62iT - 29T^{2} \) |
| 31 | \( 1 + 3.25iT - 31T^{2} \) |
| 37 | \( 1 - 4.62T + 37T^{2} \) |
| 41 | \( 1 - 8iT - 41T^{2} \) |
| 43 | \( 1 - 1.22T + 43T^{2} \) |
| 47 | \( 1 - 1.22iT - 47T^{2} \) |
| 53 | \( 1 + 0.623T + 53T^{2} \) |
| 59 | \( 1 - 11.8iT - 59T^{2} \) |
| 61 | \( 1 + 1.37iT - 61T^{2} \) |
| 67 | \( 1 - 7.74iT - 67T^{2} \) |
| 71 | \( 1 + 9.77iT - 71T^{2} \) |
| 73 | \( 1 - 2iT - 73T^{2} \) |
| 79 | \( 1 + 13.0T + 79T^{2} \) |
| 83 | \( 1 + 7.74T + 83T^{2} \) |
| 89 | \( 1 + 8.62T + 89T^{2} \) |
| 97 | \( 1 - 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.857714100916752788915591648096, −8.594096375529683487710050053581, −7.67707546726578791851897196348, −6.31071681668687012159092811839, −5.86269248092670405467781842982, −4.85025998493097913310275690334, −4.30036844931282117962722757084, −3.87477301970754354070284085846, −2.60266788832186207694020306598, −1.55338966736134744426471116452,
0.62595937739503207036531450779, 1.54344576515936925047231696995, 2.19935616458519985295351692598, 3.14867755300315557692585835784, 4.54621404099045154153294872580, 5.45351037188856839109110609572, 6.09042194578395387189076133260, 6.92813203921554330490955440286, 7.30938170944527126629041556437, 8.301559183370091861251838094891