Properties

Label 3520.2.f.i
Level $3520$
Weight $2$
Character orbit 3520.f
Analytic conductor $28.107$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3520,2,Mod(2111,3520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3520.2111");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3520 = 2^{6} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3520.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.1073415115\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.31116960000.7
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 14x^{5} + 53x^{4} - 134x^{3} - 218x^{2} + 288x + 904 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{3} + q^{5} - \beta_{3} q^{7} + (\beta_{7} - 3) q^{9} + ( - \beta_{5} - \beta_{3}) q^{11} + \beta_{6} q^{13} - \beta_{4} q^{15} - \beta_1 q^{17} + (2 \beta_{3} - \beta_{2}) q^{19} + (3 \beta_{6} - \beta_1) q^{21}+ \cdots + ( - 3 \beta_{5} + 2 \beta_{4} + \cdots + \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{5} - 20 q^{9} + 8 q^{25} - 16 q^{33} - 4 q^{37} - 20 q^{45} - 12 q^{49} + 36 q^{53} - 32 q^{69} + 44 q^{77} + 128 q^{81} - 28 q^{89} + 44 q^{93} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{7} + 14x^{5} + 53x^{4} - 134x^{3} - 218x^{2} + 288x + 904 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -13\nu^{7} + 296\nu^{6} - 854\nu^{5} - 108\nu^{4} + 1261\nu^{3} + 21160\nu^{2} - 22658\nu - 46636 ) / 12024 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 83\nu^{7} - 1042\nu^{6} + 1984\nu^{5} + 8166\nu^{4} - 11057\nu^{3} - 42452\nu^{2} - 10262\nu + 288812 ) / 44088 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -83\nu^{7} + 40\nu^{6} + 1022\nu^{5} + 852\nu^{4} - 11989\nu^{3} + 368\nu^{2} + 64370\nu + 59884 ) / 44088 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -49\nu^{7} - 79\nu^{6} + 712\nu^{5} - 831\nu^{4} - 3263\nu^{3} - 2831\nu^{2} + 9016\nu + 5927 ) / 16533 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 49\nu^{7} - 422\nu^{6} + 791\nu^{5} - 171\nu^{4} + 2762\nu^{3} - 12700\nu^{2} + 7016\nu + 8602 ) / 16533 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -26\nu^{7} + 91\nu^{6} - 205\nu^{5} + 285\nu^{4} - 985\nu^{3} + 1238\nu^{2} - 2230\nu + 916 ) / 6012 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 8\nu^{7} - 28\nu^{6} - 14\nu^{5} + 105\nu^{4} + 226\nu^{3} - 458\nu^{2} - 1472\nu + 1067 ) / 501 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{6} + 2\beta_{5} - 2\beta_{4} + 3\beta_{3} - \beta_{2} + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + \beta_{3} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -6\beta_{7} + 5\beta_{6} + 22\beta_{5} - 16\beta_{4} - 3\beta_{3} + 3\beta_{2} + 6\beta _1 + 14 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -3\beta_{7} + 2\beta_{6} + 8\beta_{5} - 10\beta_{4} + 2\beta_{3} + 6\beta_{2} + 4\beta _1 - 21 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -50\beta_{7} - 109\beta_{6} - 2\beta_{5} - 28\beta_{4} - 65\beta_{3} + 85\beta_{2} + 30\beta _1 - 218 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -30\beta_{7} - 79\beta_{6} - 71\beta_{5} - 46\beta_{4} - 59\beta_{3} + 43\beta_{2} - 18\beta _1 - 142 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 70\beta_{7} - 1359\beta_{6} - 1442\beta_{5} - 84\beta_{4} - 179\beta_{3} + 167\beta_{2} - 350\beta _1 - 1370 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3520\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(1541\) \(2751\) \(2817\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2111.1
2.43649 0.822876i
−1.43649 1.82288i
2.43649 + 1.82288i
−1.43649 + 0.822876i
2.43649 1.82288i
−1.43649 0.822876i
2.43649 + 0.822876i
−1.43649 + 1.82288i
0 3.25937i 0 1.00000 0 −3.25937 0 −7.62348 0
2111.2 0 3.25937i 0 1.00000 0 3.25937 0 −7.62348 0
2111.3 0 0.613616i 0 1.00000 0 −0.613616 0 2.62348 0
2111.4 0 0.613616i 0 1.00000 0 0.613616 0 2.62348 0
2111.5 0 0.613616i 0 1.00000 0 −0.613616 0 2.62348 0
2111.6 0 0.613616i 0 1.00000 0 0.613616 0 2.62348 0
2111.7 0 3.25937i 0 1.00000 0 −3.25937 0 −7.62348 0
2111.8 0 3.25937i 0 1.00000 0 3.25937 0 −7.62348 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2111.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
11.b odd 2 1 inner
44.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3520.2.f.i 8
4.b odd 2 1 inner 3520.2.f.i 8
8.b even 2 1 220.2.d.c 8
8.d odd 2 1 220.2.d.c 8
11.b odd 2 1 inner 3520.2.f.i 8
44.c even 2 1 inner 3520.2.f.i 8
88.b odd 2 1 220.2.d.c 8
88.g even 2 1 220.2.d.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.2.d.c 8 8.b even 2 1
220.2.d.c 8 8.d odd 2 1
220.2.d.c 8 88.b odd 2 1
220.2.d.c 8 88.g even 2 1
3520.2.f.i 8 1.a even 1 1 trivial
3520.2.f.i 8 4.b odd 2 1 inner
3520.2.f.i 8 11.b odd 2 1 inner
3520.2.f.i 8 44.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3520, [\chi])\):

\( T_{3}^{4} + 11T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{4} - 11T_{7}^{2} + 4 \) Copy content Toggle raw display
\( T_{19}^{4} - 71T_{19}^{2} + 1024 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} + 11 T^{2} + 4)^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} - 11 T^{2} + 4)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} - 178 T^{4} + 14641 \) Copy content Toggle raw display
$13$ \( (T^{2} + 4)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} + 53 T^{2} + 676)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} - 71 T^{2} + 1024)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 44 T^{2} + 64)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 65 T^{2} + 400)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 11 T^{2} + 4)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + T - 26)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 64)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} - 44 T^{2} + 64)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 44 T^{2} + 64)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 9 T - 6)^{4} \) Copy content Toggle raw display
$59$ \( (T^{4} + 156 T^{2} + 2304)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 137 T^{2} + 256)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 60)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} + 99 T^{2} + 324)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 4)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} - 176 T^{2} + 1024)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 60)^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} + 7 T - 14)^{4} \) Copy content Toggle raw display
$97$ \( (T - 2)^{8} \) Copy content Toggle raw display
show more
show less