L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.5 − 0.866i)3-s + (0.499 + 0.866i)4-s + (−0.866 + 0.5i)5-s + 0.999i·6-s − 0.999i·8-s + (−0.499 + 0.866i)9-s + 0.999·10-s + (0.5 − 0.866i)11-s + (0.499 − 0.866i)12-s + (−0.866 + 0.5i)13-s + (0.866 + 0.499i)15-s + (−0.5 + 0.866i)16-s + 17-s + (0.866 − 0.499i)18-s − 19-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.5 − 0.866i)3-s + (0.499 + 0.866i)4-s + (−0.866 + 0.5i)5-s + 0.999i·6-s − 0.999i·8-s + (−0.499 + 0.866i)9-s + 0.999·10-s + (0.5 − 0.866i)11-s + (0.499 − 0.866i)12-s + (−0.866 + 0.5i)13-s + (0.866 + 0.499i)15-s + (−0.5 + 0.866i)16-s + 17-s + (0.866 − 0.499i)18-s − 19-s + ⋯ |
Λ(s)=(=(3528s/2ΓC(s)L(s)(−0.984−0.173i)Λ(1−s)
Λ(s)=(=(3528s/2ΓC(s)L(s)(−0.984−0.173i)Λ(1−s)
Degree: |
2 |
Conductor: |
3528
= 23⋅32⋅72
|
Sign: |
−0.984−0.173i
|
Analytic conductor: |
1.76070 |
Root analytic conductor: |
1.32691 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3528(2059,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3528, ( :0), −0.984−0.173i)
|
Particular Values
L(21) |
≈ |
0.2022188474 |
L(21) |
≈ |
0.2022188474 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866+0.5i)T |
| 3 | 1+(0.5+0.866i)T |
| 7 | 1 |
good | 5 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 11 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 13 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 17 | 1−T+T2 |
| 19 | 1+T+T2 |
| 23 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 29 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1−iT−T2 |
| 41 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 43 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1+iT−T2 |
| 59 | 1+(−0.5+0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+T+T2 |
| 79 | 1+(1.73+i)T+(0.5+0.866i)T2 |
| 83 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 89 | 1+T+T2 |
| 97 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.369692084829507249966076536939, −7.56623737658236347202436486844, −7.09624325762129458868040765793, −6.47560255494082344491196512664, −5.53180956507558771160557584707, −4.29931682151293741919426009340, −3.39864557703299118438646358323, −2.55651692164476565764715583662, −1.49614180284212668885195459786, −0.18575091203530133148403206079,
1.27297274609380430027497668110, 2.77811340387787122638099571724, 3.96514661201432798844170104391, 4.70525641638961301599220273962, 5.37087692657741975151146833972, 6.15801425521371923824834134501, 7.15265739055284454859344791009, 7.63360244313688579326072212944, 8.490621689289729590995029150776, 9.174356066945332835880687283474