L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.5 − 0.866i)3-s + (0.499 + 0.866i)4-s + (−0.866 + 0.5i)5-s + 0.999i·6-s − 0.999i·8-s + (−0.499 + 0.866i)9-s + 0.999·10-s + (0.5 − 0.866i)11-s + (0.499 − 0.866i)12-s + (−0.866 + 0.5i)13-s + (0.866 + 0.499i)15-s + (−0.5 + 0.866i)16-s + 17-s + (0.866 − 0.499i)18-s − 19-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.5 − 0.866i)3-s + (0.499 + 0.866i)4-s + (−0.866 + 0.5i)5-s + 0.999i·6-s − 0.999i·8-s + (−0.499 + 0.866i)9-s + 0.999·10-s + (0.5 − 0.866i)11-s + (0.499 − 0.866i)12-s + (−0.866 + 0.5i)13-s + (0.866 + 0.499i)15-s + (−0.5 + 0.866i)16-s + 17-s + (0.866 − 0.499i)18-s − 19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2022188474\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2022188474\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T + T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - iT - T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + iT - T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 + (1.73 + i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.369692084829507249966076536939, −7.56623737658236347202436486844, −7.09624325762129458868040765793, −6.47560255494082344491196512664, −5.53180956507558771160557584707, −4.29931682151293741919426009340, −3.39864557703299118438646358323, −2.55651692164476565764715583662, −1.49614180284212668885195459786, −0.18575091203530133148403206079,
1.27297274609380430027497668110, 2.77811340387787122638099571724, 3.96514661201432798844170104391, 4.70525641638961301599220273962, 5.37087692657741975151146833972, 6.15801425521371923824834134501, 7.15265739055284454859344791009, 7.63360244313688579326072212944, 8.490621689289729590995029150776, 9.174356066945332835880687283474