Properties

Label 3528.1.cg.c.2059.1
Level 35283528
Weight 11
Character 3528.2059
Analytic conductor 1.7611.761
Analytic rank 00
Dimension 44
Projective image A4A_{4}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3528,1,Mod(2059,3528)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3528, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3528.2059");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3528=233272 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3528.cg (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.760701364571.76070136457
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 504)
Projective image: A4A_{4}
Projective field: Galois closure of 4.0.254016.3

Embedding invariants

Embedding label 2059.1
Root 0.866025+0.500000i0.866025 + 0.500000i of defining polynomial
Character χ\chi == 3528.2059
Dual form 3528.1.cg.c.3235.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.8660250.500000i)q2+(0.5000000.866025i)q3+(0.500000+0.866025i)q4+(0.866025+0.500000i)q5+1.00000iq61.00000iq8+(0.500000+0.866025i)q9+1.00000q10+(0.5000000.866025i)q11+(0.5000000.866025i)q12+(0.866025+0.500000i)q13+(0.866025+0.500000i)q15+(0.500000+0.866025i)q16+1.00000q17+(0.8660250.500000i)q181.00000q19+(0.8660250.500000i)q20+(0.866025+0.500000i)q22+(0.8660250.500000i)q23+(0.866025+0.500000i)q24+1.00000q26+1.00000q27+(0.8660250.500000i)q29+(0.5000000.866025i)q30+(0.8660250.500000i)q321.00000q33+(0.8660250.500000i)q341.00000q36+1.00000iq37+(0.866025+0.500000i)q38+(0.866025+0.500000i)q39+(0.500000+0.866025i)q40+(0.5000000.866025i)q41+(0.5000000.866025i)q43+1.00000q441.00000iq451.00000q46+1.00000q48+(0.5000000.866025i)q51+(0.8660250.500000i)q521.00000iq53+(0.8660250.500000i)q54+1.00000iq55+(0.500000+0.866025i)q57+(0.500000+0.866025i)q58+1.00000iq601.00000q64+(0.5000000.866025i)q65+(0.866025+0.500000i)q66+(0.500000+0.866025i)q68+(0.8660250.500000i)q69+(0.866025+0.500000i)q721.00000q73+(0.5000000.866025i)q74+(0.5000000.866025i)q76+(0.5000000.866025i)q78+(1.732051.00000i)q791.00000iq80+(0.5000000.866025i)q81+1.00000iq82+(0.500000+0.866025i)q83+(0.866025+0.500000i)q85+(0.866025+0.500000i)q86+1.00000iq87+(0.8660250.500000i)q881.00000q89+(0.500000+0.866025i)q90+(0.866025+0.500000i)q92+(0.8660250.500000i)q95+(0.8660250.500000i)q96+(0.5000000.866025i)q97+(0.500000+0.866025i)q99+O(q100)q+(-0.866025 - 0.500000i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-0.866025 + 0.500000i) q^{5} +1.00000i q^{6} -1.00000i q^{8} +(-0.500000 + 0.866025i) q^{9} +1.00000 q^{10} +(0.500000 - 0.866025i) q^{11} +(0.500000 - 0.866025i) q^{12} +(-0.866025 + 0.500000i) q^{13} +(0.866025 + 0.500000i) q^{15} +(-0.500000 + 0.866025i) q^{16} +1.00000 q^{17} +(0.866025 - 0.500000i) q^{18} -1.00000 q^{19} +(-0.866025 - 0.500000i) q^{20} +(-0.866025 + 0.500000i) q^{22} +(0.866025 - 0.500000i) q^{23} +(-0.866025 + 0.500000i) q^{24} +1.00000 q^{26} +1.00000 q^{27} +(-0.866025 - 0.500000i) q^{29} +(-0.500000 - 0.866025i) q^{30} +(0.866025 - 0.500000i) q^{32} -1.00000 q^{33} +(-0.866025 - 0.500000i) q^{34} -1.00000 q^{36} +1.00000i q^{37} +(0.866025 + 0.500000i) q^{38} +(0.866025 + 0.500000i) q^{39} +(0.500000 + 0.866025i) q^{40} +(-0.500000 - 0.866025i) q^{41} +(0.500000 - 0.866025i) q^{43} +1.00000 q^{44} -1.00000i q^{45} -1.00000 q^{46} +1.00000 q^{48} +(-0.500000 - 0.866025i) q^{51} +(-0.866025 - 0.500000i) q^{52} -1.00000i q^{53} +(-0.866025 - 0.500000i) q^{54} +1.00000i q^{55} +(0.500000 + 0.866025i) q^{57} +(0.500000 + 0.866025i) q^{58} +1.00000i q^{60} -1.00000 q^{64} +(0.500000 - 0.866025i) q^{65} +(0.866025 + 0.500000i) q^{66} +(0.500000 + 0.866025i) q^{68} +(-0.866025 - 0.500000i) q^{69} +(0.866025 + 0.500000i) q^{72} -1.00000 q^{73} +(0.500000 - 0.866025i) q^{74} +(-0.500000 - 0.866025i) q^{76} +(-0.500000 - 0.866025i) q^{78} +(-1.73205 - 1.00000i) q^{79} -1.00000i q^{80} +(-0.500000 - 0.866025i) q^{81} +1.00000i q^{82} +(-0.500000 + 0.866025i) q^{83} +(-0.866025 + 0.500000i) q^{85} +(-0.866025 + 0.500000i) q^{86} +1.00000i q^{87} +(-0.866025 - 0.500000i) q^{88} -1.00000 q^{89} +(-0.500000 + 0.866025i) q^{90} +(0.866025 + 0.500000i) q^{92} +(0.866025 - 0.500000i) q^{95} +(-0.866025 - 0.500000i) q^{96} +(0.500000 - 0.866025i) q^{97} +(0.500000 + 0.866025i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q3+2q42q9+4q10+2q11+2q122q16+4q174q19+4q26+4q272q304q334q36+2q402q41+2q43+4q444q46++2q99+O(q100) 4 q - 2 q^{3} + 2 q^{4} - 2 q^{9} + 4 q^{10} + 2 q^{11} + 2 q^{12} - 2 q^{16} + 4 q^{17} - 4 q^{19} + 4 q^{26} + 4 q^{27} - 2 q^{30} - 4 q^{33} - 4 q^{36} + 2 q^{40} - 2 q^{41} + 2 q^{43} + 4 q^{44} - 4 q^{46}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3528Z)×\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times.

nn 785785 10811081 17651765 26472647
χ(n)\chi(n) e(23)e\left(\frac{2}{3}\right) 11 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.866025 0.500000i −0.866025 0.500000i
33 −0.500000 0.866025i −0.500000 0.866025i
44 0.500000 + 0.866025i 0.500000 + 0.866025i
55 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
66 1.00000i 1.00000i
77 0 0
88 1.00000i 1.00000i
99 −0.500000 + 0.866025i −0.500000 + 0.866025i
1010 1.00000 1.00000
1111 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
1212 0.500000 0.866025i 0.500000 0.866025i
1313 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
1414 0 0
1515 0.866025 + 0.500000i 0.866025 + 0.500000i
1616 −0.500000 + 0.866025i −0.500000 + 0.866025i
1717 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1818 0.866025 0.500000i 0.866025 0.500000i
1919 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
2020 −0.866025 0.500000i −0.866025 0.500000i
2121 0 0
2222 −0.866025 + 0.500000i −0.866025 + 0.500000i
2323 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
2424 −0.866025 + 0.500000i −0.866025 + 0.500000i
2525 0 0
2626 1.00000 1.00000
2727 1.00000 1.00000
2828 0 0
2929 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
3030 −0.500000 0.866025i −0.500000 0.866025i
3131 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3232 0.866025 0.500000i 0.866025 0.500000i
3333 −1.00000 −1.00000
3434 −0.866025 0.500000i −0.866025 0.500000i
3535 0 0
3636 −1.00000 −1.00000
3737 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
3838 0.866025 + 0.500000i 0.866025 + 0.500000i
3939 0.866025 + 0.500000i 0.866025 + 0.500000i
4040 0.500000 + 0.866025i 0.500000 + 0.866025i
4141 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
4242 0 0
4343 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
4444 1.00000 1.00000
4545 1.00000i 1.00000i
4646 −1.00000 −1.00000
4747 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4848 1.00000 1.00000
4949 0 0
5050 0 0
5151 −0.500000 0.866025i −0.500000 0.866025i
5252 −0.866025 0.500000i −0.866025 0.500000i
5353 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
5454 −0.866025 0.500000i −0.866025 0.500000i
5555 1.00000i 1.00000i
5656 0 0
5757 0.500000 + 0.866025i 0.500000 + 0.866025i
5858 0.500000 + 0.866025i 0.500000 + 0.866025i
5959 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6060 1.00000i 1.00000i
6161 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6262 0 0
6363 0 0
6464 −1.00000 −1.00000
6565 0.500000 0.866025i 0.500000 0.866025i
6666 0.866025 + 0.500000i 0.866025 + 0.500000i
6767 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6868 0.500000 + 0.866025i 0.500000 + 0.866025i
6969 −0.866025 0.500000i −0.866025 0.500000i
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0.866025 + 0.500000i 0.866025 + 0.500000i
7373 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7474 0.500000 0.866025i 0.500000 0.866025i
7575 0 0
7676 −0.500000 0.866025i −0.500000 0.866025i
7777 0 0
7878 −0.500000 0.866025i −0.500000 0.866025i
7979 −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 0.500000i 0.833333π-0.833333\pi
8080 1.00000i 1.00000i
8181 −0.500000 0.866025i −0.500000 0.866025i
8282 1.00000i 1.00000i
8383 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
8484 0 0
8585 −0.866025 + 0.500000i −0.866025 + 0.500000i
8686 −0.866025 + 0.500000i −0.866025 + 0.500000i
8787 1.00000i 1.00000i
8888 −0.866025 0.500000i −0.866025 0.500000i
8989 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9090 −0.500000 + 0.866025i −0.500000 + 0.866025i
9191 0 0
9292 0.866025 + 0.500000i 0.866025 + 0.500000i
9393 0 0
9494 0 0
9595 0.866025 0.500000i 0.866025 0.500000i
9696 −0.866025 0.500000i −0.866025 0.500000i
9797 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
9898 0 0
9999 0.500000 + 0.866025i 0.500000 + 0.866025i
100100 0 0
101101 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
102102 1.00000i 1.00000i
103103 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
104104 0.500000 + 0.866025i 0.500000 + 0.866025i
105105 0 0
106106 −0.500000 + 0.866025i −0.500000 + 0.866025i
107107 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
108108 0.500000 + 0.866025i 0.500000 + 0.866025i
109109 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
110110 0.500000 0.866025i 0.500000 0.866025i
111111 0.866025 0.500000i 0.866025 0.500000i
112112 0 0
113113 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
114114 1.00000i 1.00000i
115115 −0.500000 + 0.866025i −0.500000 + 0.866025i
116116 1.00000i 1.00000i
117117 1.00000i 1.00000i
118118 0 0
119119 0 0
120120 0.500000 0.866025i 0.500000 0.866025i
121121 0 0
122122 0 0
123123 −0.500000 + 0.866025i −0.500000 + 0.866025i
124124 0 0
125125 1.00000i 1.00000i
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 0.866025 + 0.500000i 0.866025 + 0.500000i
129129 −1.00000 −1.00000
130130 −0.866025 + 0.500000i −0.866025 + 0.500000i
131131 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
132132 −0.500000 0.866025i −0.500000 0.866025i
133133 0 0
134134 0 0
135135 −0.866025 + 0.500000i −0.866025 + 0.500000i
136136 1.00000i 1.00000i
137137 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
138138 0.500000 + 0.866025i 0.500000 + 0.866025i
139139 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
140140 0 0
141141 0 0
142142 0 0
143143 1.00000i 1.00000i
144144 −0.500000 0.866025i −0.500000 0.866025i
145145 1.00000 1.00000
146146 0.866025 + 0.500000i 0.866025 + 0.500000i
147147 0 0
148148 −0.866025 + 0.500000i −0.866025 + 0.500000i
149149 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
150150 0 0
151151 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
152152 1.00000i 1.00000i
153153 −0.500000 + 0.866025i −0.500000 + 0.866025i
154154 0 0
155155 0 0
156156 1.00000i 1.00000i
157157 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
158158 1.00000 + 1.73205i 1.00000 + 1.73205i
159159 −0.866025 + 0.500000i −0.866025 + 0.500000i
160160 −0.500000 + 0.866025i −0.500000 + 0.866025i
161161 0 0
162162 1.00000i 1.00000i
163163 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
164164 0.500000 0.866025i 0.500000 0.866025i
165165 0.866025 0.500000i 0.866025 0.500000i
166166 0.866025 0.500000i 0.866025 0.500000i
167167 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 0 0
170170 1.00000 1.00000
171171 0.500000 0.866025i 0.500000 0.866025i
172172 1.00000 1.00000
173173 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
174174 0.500000 0.866025i 0.500000 0.866025i
175175 0 0
176176 0.500000 + 0.866025i 0.500000 + 0.866025i
177177 0 0
178178 0.866025 + 0.500000i 0.866025 + 0.500000i
179179 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
180180 0.866025 0.500000i 0.866025 0.500000i
181181 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
182182 0 0
183183 0 0
184184 −0.500000 0.866025i −0.500000 0.866025i
185185 −0.500000 0.866025i −0.500000 0.866025i
186186 0 0
187187 0.500000 0.866025i 0.500000 0.866025i
188188 0 0
189189 0 0
190190 −1.00000 −1.00000
191191 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
192192 0.500000 + 0.866025i 0.500000 + 0.866025i
193193 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
194194 −0.866025 + 0.500000i −0.866025 + 0.500000i
195195 −1.00000 −1.00000
196196 0 0
197197 0 0 1.00000 00
−1.00000 π\pi
198198 1.00000i 1.00000i
199199 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
200200 0 0
201201 0 0
202202 0.500000 + 0.866025i 0.500000 + 0.866025i
203203 0 0
204204 0.500000 0.866025i 0.500000 0.866025i
205205 0.866025 + 0.500000i 0.866025 + 0.500000i
206206 −1.00000 −1.00000
207207 1.00000i 1.00000i
208208 1.00000i 1.00000i
209209 −0.500000 + 0.866025i −0.500000 + 0.866025i
210210 0 0
211211 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
212212 0.866025 0.500000i 0.866025 0.500000i
213213 0 0
214214 0.866025 + 0.500000i 0.866025 + 0.500000i
215215 1.00000i 1.00000i
216216 1.00000i 1.00000i
217217 0 0
218218 0.500000 0.866025i 0.500000 0.866025i
219219 0.500000 + 0.866025i 0.500000 + 0.866025i
220220 −0.866025 + 0.500000i −0.866025 + 0.500000i
221221 −0.866025 + 0.500000i −0.866025 + 0.500000i
222222 −1.00000 −1.00000
223223 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
224224 0 0
225225 0 0
226226 1.00000i 1.00000i
227227 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
228228 −0.500000 + 0.866025i −0.500000 + 0.866025i
229229 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
230230 0.866025 0.500000i 0.866025 0.500000i
231231 0 0
232232 −0.500000 + 0.866025i −0.500000 + 0.866025i
233233 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
234234 −0.500000 + 0.866025i −0.500000 + 0.866025i
235235 0 0
236236 0 0
237237 2.00000i 2.00000i
238238 0 0
239239 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
240240 −0.866025 + 0.500000i −0.866025 + 0.500000i
241241 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
242242 0 0
243243 −0.500000 + 0.866025i −0.500000 + 0.866025i
244244 0 0
245245 0 0
246246 0.866025 0.500000i 0.866025 0.500000i
247247 0.866025 0.500000i 0.866025 0.500000i
248248 0 0
249249 1.00000 1.00000
250250 −0.500000 + 0.866025i −0.500000 + 0.866025i
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 1.00000i 1.00000i
254254 0 0
255255 0.866025 + 0.500000i 0.866025 + 0.500000i
256256 −0.500000 0.866025i −0.500000 0.866025i
257257 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
258258 0.866025 + 0.500000i 0.866025 + 0.500000i
259259 0 0
260260 1.00000 1.00000
261261 0.866025 0.500000i 0.866025 0.500000i
262262 1.00000i 1.00000i
263263 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
264264 1.00000i 1.00000i
265265 0.500000 + 0.866025i 0.500000 + 0.866025i
266266 0 0
267267 0.500000 + 0.866025i 0.500000 + 0.866025i
268268 0 0
269269 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
270270 1.00000 1.00000
271271 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
272272 −0.500000 + 0.866025i −0.500000 + 0.866025i
273273 0 0
274274 0.866025 0.500000i 0.866025 0.500000i
275275 0 0
276276 1.00000i 1.00000i
277277 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
278278 1.00000i 1.00000i
279279 0 0
280280 0 0
281281 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
282282 0 0
283283 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
284284 0 0
285285 −0.866025 0.500000i −0.866025 0.500000i
286286 0.500000 0.866025i 0.500000 0.866025i
287287 0 0
288288 1.00000i 1.00000i
289289 0 0
290290 −0.866025 0.500000i −0.866025 0.500000i
291291 −1.00000 −1.00000
292292 −0.500000 0.866025i −0.500000 0.866025i
293293 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
294294 0 0
295295 0 0
296296 1.00000 1.00000
297297 0.500000 0.866025i 0.500000 0.866025i
298298 1.00000 1.00000
299299 −0.500000 + 0.866025i −0.500000 + 0.866025i
300300 0 0
301301 0 0
302302 0.500000 + 0.866025i 0.500000 + 0.866025i
303303 1.00000i 1.00000i
304304 0.500000 0.866025i 0.500000 0.866025i
305305 0 0
306306 0.866025 0.500000i 0.866025 0.500000i
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 −0.866025 0.500000i −0.866025 0.500000i
310310 0 0
311311 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
312312 0.500000 0.866025i 0.500000 0.866025i
313313 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
314314 0 0
315315 0 0
316316 2.00000i 2.00000i
317317 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
318318 1.00000 1.00000
319319 −0.866025 + 0.500000i −0.866025 + 0.500000i
320320 0.866025 0.500000i 0.866025 0.500000i
321321 0.500000 + 0.866025i 0.500000 + 0.866025i
322322 0 0
323323 −1.00000 −1.00000
324324 0.500000 0.866025i 0.500000 0.866025i
325325 0 0
326326 −0.866025 0.500000i −0.866025 0.500000i
327327 0.866025 0.500000i 0.866025 0.500000i
328328 −0.866025 + 0.500000i −0.866025 + 0.500000i
329329 0 0
330330 −1.00000 −1.00000
331331 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
332332 −1.00000 −1.00000
333333 −0.866025 0.500000i −0.866025 0.500000i
334334 1.00000 1.00000
335335 0 0
336336 0 0
337337 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
338338 0 0
339339 −0.500000 + 0.866025i −0.500000 + 0.866025i
340340 −0.866025 0.500000i −0.866025 0.500000i
341341 0 0
342342 −0.866025 + 0.500000i −0.866025 + 0.500000i
343343 0 0
344344 −0.866025 0.500000i −0.866025 0.500000i
345345 1.00000 1.00000
346346 0 0
347347 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
348348 −0.866025 + 0.500000i −0.866025 + 0.500000i
349349 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
350350 0 0
351351 −0.866025 + 0.500000i −0.866025 + 0.500000i
352352 1.00000i 1.00000i
353353 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
354354 0 0
355355 0 0
356356 −0.500000 0.866025i −0.500000 0.866025i
357357 0 0
358358 0.866025 + 0.500000i 0.866025 + 0.500000i
359359 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
360360 −1.00000 −1.00000
361361 0 0
362362 −1.00000 + 1.73205i −1.00000 + 1.73205i
363363 0 0
364364 0 0
365365 0.866025 0.500000i 0.866025 0.500000i
366366 0 0
367367 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
368368 1.00000i 1.00000i
369369 1.00000 1.00000
370370 1.00000i 1.00000i
371371 0 0
372372 0 0
373373 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
374374 −0.866025 + 0.500000i −0.866025 + 0.500000i
375375 −0.866025 + 0.500000i −0.866025 + 0.500000i
376376 0 0
377377 1.00000 1.00000
378378 0 0
379379 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
380380 0.866025 + 0.500000i 0.866025 + 0.500000i
381381 0 0
382382 0 0
383383 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
384384 1.00000i 1.00000i
385385 0 0
386386 0 0
387387 0.500000 + 0.866025i 0.500000 + 0.866025i
388388 1.00000 1.00000
389389 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
390390 0.866025 + 0.500000i 0.866025 + 0.500000i
391391 0.866025 0.500000i 0.866025 0.500000i
392392 0 0
393393 −0.500000 + 0.866025i −0.500000 + 0.866025i
394394 0 0
395395 2.00000 2.00000
396396 −0.500000 + 0.866025i −0.500000 + 0.866025i
397397 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
398398 0.500000 0.866025i 0.500000 0.866025i
399399 0 0
400400 0 0
401401 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
402402 0 0
403403 0 0
404404 1.00000i 1.00000i
405405 0.866025 + 0.500000i 0.866025 + 0.500000i
406406 0 0
407407 0.866025 + 0.500000i 0.866025 + 0.500000i
408408 −0.866025 + 0.500000i −0.866025 + 0.500000i
409409 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
410410 −0.500000 0.866025i −0.500000 0.866025i
411411 1.00000 1.00000
412412 0.866025 + 0.500000i 0.866025 + 0.500000i
413413 0 0
414414 0.500000 0.866025i 0.500000 0.866025i
415415 1.00000i 1.00000i
416416 −0.500000 + 0.866025i −0.500000 + 0.866025i
417417 −0.500000 + 0.866025i −0.500000 + 0.866025i
418418 0.866025 0.500000i 0.866025 0.500000i
419419 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
420420 0 0
421421 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
422422 1.00000i 1.00000i
423423 0 0
424424 −1.00000 −1.00000
425425 0 0
426426 0 0
427427 0 0
428428 −0.500000 0.866025i −0.500000 0.866025i
429429 0.866025 0.500000i 0.866025 0.500000i
430430 0.500000 0.866025i 0.500000 0.866025i
431431 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
432432 −0.500000 + 0.866025i −0.500000 + 0.866025i
433433 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
434434 0 0
435435 −0.500000 0.866025i −0.500000 0.866025i
436436 −0.866025 + 0.500000i −0.866025 + 0.500000i
437437 −0.866025 + 0.500000i −0.866025 + 0.500000i
438438 1.00000i 1.00000i
439439 −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 0.500000i 0.833333π-0.833333\pi
440440 1.00000 1.00000
441441 0 0
442442 1.00000 1.00000
443443 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
444444 0.866025 + 0.500000i 0.866025 + 0.500000i
445445 0.866025 0.500000i 0.866025 0.500000i
446446 −0.500000 0.866025i −0.500000 0.866025i
447447 0.866025 + 0.500000i 0.866025 + 0.500000i
448448 0 0
449449 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
450450 0 0
451451 −1.00000 −1.00000
452452 0.500000 0.866025i 0.500000 0.866025i
453453 1.00000i 1.00000i
454454 0.866025 0.500000i 0.866025 0.500000i
455455 0 0
456456 0.866025 0.500000i 0.866025 0.500000i
457457 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
458458 −1.00000 −1.00000
459459 1.00000 1.00000
460460 −1.00000 −1.00000
461461 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
464464 0.866025 0.500000i 0.866025 0.500000i
465465 0 0
466466 0.866025 + 0.500000i 0.866025 + 0.500000i
467467 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
468468 0.866025 0.500000i 0.866025 0.500000i
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 −0.500000 0.866025i −0.500000 0.866025i
474474 1.00000 1.73205i 1.00000 1.73205i
475475 0 0
476476 0 0
477477 0.866025 + 0.500000i 0.866025 + 0.500000i
478478 −1.00000 −1.00000
479479 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
480480 1.00000 1.00000
481481 −0.500000 0.866025i −0.500000 0.866025i
482482 0.866025 0.500000i 0.866025 0.500000i
483483 0 0
484484 0 0
485485 1.00000i 1.00000i
486486 0.866025 0.500000i 0.866025 0.500000i
487487 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
488488 0 0
489489 −0.500000 0.866025i −0.500000 0.866025i
490490 0 0
491491 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
492492 −1.00000 −1.00000
493493 −0.866025 0.500000i −0.866025 0.500000i
494494 −1.00000 −1.00000
495495 −0.866025 0.500000i −0.866025 0.500000i
496496 0 0
497497 0 0
498498 −0.866025 0.500000i −0.866025 0.500000i
499499 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
500500 0.866025 0.500000i 0.866025 0.500000i
501501 0.866025 + 0.500000i 0.866025 + 0.500000i
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 1.00000 1.00000
506506 −0.500000 + 0.866025i −0.500000 + 0.866025i
507507 0 0
508508 0 0
509509 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
510510 −0.500000 0.866025i −0.500000 0.866025i
511511 0 0
512512 1.00000i 1.00000i
513513 −1.00000 −1.00000
514514 1.00000i 1.00000i
515515 −0.500000 + 0.866025i −0.500000 + 0.866025i
516516 −0.500000 0.866025i −0.500000 0.866025i
517517 0 0
518518 0 0
519519 0 0
520520 −0.866025 0.500000i −0.866025 0.500000i
521521 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
522522 −1.00000 −1.00000
523523 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
524524 0.500000 0.866025i 0.500000 0.866025i
525525 0 0
526526 −0.500000 0.866025i −0.500000 0.866025i
527527 0 0
528528 0.500000 0.866025i 0.500000 0.866025i
529529 0 0
530530 1.00000i 1.00000i
531531 0 0
532532 0 0
533533 0.866025 + 0.500000i 0.866025 + 0.500000i
534534 1.00000i 1.00000i
535535 0.866025 0.500000i 0.866025 0.500000i
536536 0 0
537537 0.500000 + 0.866025i 0.500000 + 0.866025i
538538 −0.500000 + 0.866025i −0.500000 + 0.866025i
539539 0 0
540540 −0.866025 0.500000i −0.866025 0.500000i
541541 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
542542 0.500000 0.866025i 0.500000 0.866025i
543543 −1.73205 + 1.00000i −1.73205 + 1.00000i
544544 0.866025 0.500000i 0.866025 0.500000i
545545 −0.500000 0.866025i −0.500000 0.866025i
546546 0 0
547547 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
548548 −1.00000 −1.00000
549549 0 0
550550 0 0
551551 0.866025 + 0.500000i 0.866025 + 0.500000i
552552 −0.500000 + 0.866025i −0.500000 + 0.866025i
553553 0 0
554554 0.500000 + 0.866025i 0.500000 + 0.866025i
555555 −0.500000 + 0.866025i −0.500000 + 0.866025i
556556 0.500000 0.866025i 0.500000 0.866025i
557557 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
558558 0 0
559559 1.00000i 1.00000i
560560 0 0
561561 −1.00000 −1.00000
562562 0.866025 0.500000i 0.866025 0.500000i
563563 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
564564 0 0
565565 0.866025 + 0.500000i 0.866025 + 0.500000i
566566 0 0
567567 0 0
568568 0 0
569569 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
570570 0.500000 + 0.866025i 0.500000 + 0.866025i
571571 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
572572 −0.866025 + 0.500000i −0.866025 + 0.500000i
573573 0 0
574574 0 0
575575 0 0
576576 0.500000 0.866025i 0.500000 0.866025i
577577 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
578578 0 0
579579 0 0
580580 0.500000 + 0.866025i 0.500000 + 0.866025i
581581 0 0
582582 0.866025 + 0.500000i 0.866025 + 0.500000i
583583 −0.866025 0.500000i −0.866025 0.500000i
584584 1.00000i 1.00000i
585585 0.500000 + 0.866025i 0.500000 + 0.866025i
586586 −1.00000 −1.00000
587587 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 −0.866025 0.500000i −0.866025 0.500000i
593593 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
594594 −0.866025 + 0.500000i −0.866025 + 0.500000i
595595 0 0
596596 −0.866025 0.500000i −0.866025 0.500000i
597597 0.866025 0.500000i 0.866025 0.500000i
598598 0.866025 0.500000i 0.866025 0.500000i
599599 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
600600 0 0
601601 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
602602 0 0
603603 0 0
604604 1.00000i 1.00000i
605605 0 0
606606 0.500000 0.866025i 0.500000 0.866025i
607607 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
608608 −0.866025 + 0.500000i −0.866025 + 0.500000i
609609 0 0
610610 0 0
611611 0 0
612612 −1.00000 −1.00000
613613 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
614614 0 0
615615 1.00000i 1.00000i
616616 0 0
617617 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
618618 0.500000 + 0.866025i 0.500000 + 0.866025i
619619 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
620620 0 0
621621 0.866025 0.500000i 0.866025 0.500000i
622622 −2.00000 −2.00000
623623 0 0
624624 −0.866025 + 0.500000i −0.866025 + 0.500000i
625625 0.500000 + 0.866025i 0.500000 + 0.866025i
626626 0 0
627627 1.00000 1.00000
628628 0 0
629629 1.00000i 1.00000i
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 −1.00000 + 1.73205i −1.00000 + 1.73205i
633633 0.500000 0.866025i 0.500000 0.866025i
634634 0 0
635635 0 0
636636 −0.866025 0.500000i −0.866025 0.500000i
637637 0 0
638638 1.00000 1.00000
639639 0 0
640640 −1.00000 −1.00000
641641 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
642642 1.00000i 1.00000i
643643 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
644644 0 0
645645 0.866025 0.500000i 0.866025 0.500000i
646646 0.866025 + 0.500000i 0.866025 + 0.500000i
647647 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
648648 −0.866025 + 0.500000i −0.866025 + 0.500000i
649649 0 0
650650 0 0
651651 0 0
652652 0.500000 + 0.866025i 0.500000 + 0.866025i
653653 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
654654 −1.00000 −1.00000
655655 0.866025 + 0.500000i 0.866025 + 0.500000i
656656 1.00000 1.00000
657657 0.500000 0.866025i 0.500000 0.866025i
658658 0 0
659659 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
660660 0.866025 + 0.500000i 0.866025 + 0.500000i
661661 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
662662 0 0
663663 0.866025 + 0.500000i 0.866025 + 0.500000i
664664 0.866025 + 0.500000i 0.866025 + 0.500000i
665665 0 0
666666 0.500000 + 0.866025i 0.500000 + 0.866025i
667667 −1.00000 −1.00000
668668 −0.866025 0.500000i −0.866025 0.500000i
669669 1.00000i 1.00000i
670670 0 0
671671 0 0
672672 0 0
673673 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
674674 1.00000i 1.00000i
675675 0 0
676676 0 0
677677 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
678678 0.866025 0.500000i 0.866025 0.500000i
679679 0 0
680680 0.500000 + 0.866025i 0.500000 + 0.866025i
681681 1.00000 1.00000
682682 0 0
683683 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
684684 1.00000 1.00000
685685 1.00000i 1.00000i
686686 0 0
687687 −0.866025 0.500000i −0.866025 0.500000i
688688 0.500000 + 0.866025i 0.500000 + 0.866025i
689689 0.500000 + 0.866025i 0.500000 + 0.866025i
690690 −0.866025 0.500000i −0.866025 0.500000i
691691 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
692692 0 0
693693 0 0
694694 0 0
695695 0.866025 + 0.500000i 0.866025 + 0.500000i
696696 1.00000 1.00000
697697 −0.500000 0.866025i −0.500000 0.866025i
698698 0.500000 + 0.866025i 0.500000 + 0.866025i
699699 0.500000 + 0.866025i 0.500000 + 0.866025i
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 1.00000 1.00000
703703 1.00000i 1.00000i
704704 −0.500000 + 0.866025i −0.500000 + 0.866025i
705705 0 0
706706 0.866025 0.500000i 0.866025 0.500000i
707707 0 0
708708 0 0
709709 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
710710 0 0
711711 1.73205 1.00000i 1.73205 1.00000i
712712 1.00000i 1.00000i
713713 0 0
714714 0 0
715715 −0.500000 0.866025i −0.500000 0.866025i
716716 −0.500000 0.866025i −0.500000 0.866025i
717717 −0.866025 0.500000i −0.866025 0.500000i
718718 −0.500000 + 0.866025i −0.500000 + 0.866025i
719719 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
720720 0.866025 + 0.500000i 0.866025 + 0.500000i
721721 0 0
722722 0 0
723723 1.00000 1.00000
724724 1.73205 1.00000i 1.73205 1.00000i
725725 0 0
726726 0 0
727727 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
728728 0 0
729729 1.00000 1.00000
730730 −1.00000 −1.00000
731731 0.500000 0.866025i 0.500000 0.866025i
732732 0 0
733733 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
734734 0.500000 + 0.866025i 0.500000 + 0.866025i
735735 0 0
736736 0.500000 0.866025i 0.500000 0.866025i
737737 0 0
738738 −0.866025 0.500000i −0.866025 0.500000i
739739 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
740740 0.500000 0.866025i 0.500000 0.866025i
741741 −0.866025 0.500000i −0.866025 0.500000i
742742 0 0
743743 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 0.500000 0.866025i 0.500000 0.866025i
746746 −1.00000 −1.00000
747747 −0.500000 0.866025i −0.500000 0.866025i
748748 1.00000 1.00000
749749 0 0
750750 1.00000 1.00000
751751 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
752752 0 0
753753 0 0
754754 −0.866025 0.500000i −0.866025 0.500000i
755755 1.00000 1.00000
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 0 0
759759 −0.866025 + 0.500000i −0.866025 + 0.500000i
760760 −0.500000 0.866025i −0.500000 0.866025i
761761 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 0 0
763763 0 0
764764 0 0
765765 1.00000i 1.00000i
766766 −1.00000 −1.00000
767767 0 0
768768 −0.500000 + 0.866025i −0.500000 + 0.866025i
769769 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
770770 0 0
771771 −0.500000 + 0.866025i −0.500000 + 0.866025i
772772 0 0
773773 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
774774 1.00000i 1.00000i
775775 0 0
776776 −0.866025 0.500000i −0.866025 0.500000i
777777 0 0
778778 0.500000 + 0.866025i 0.500000 + 0.866025i
779779 0.500000 + 0.866025i 0.500000 + 0.866025i
780780 −0.500000 0.866025i −0.500000 0.866025i
781781 0 0
782782 −1.00000 −1.00000
783783 −0.866025 0.500000i −0.866025 0.500000i
784784 0 0
785785 0 0
786786 0.866025 0.500000i 0.866025 0.500000i
787787 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
788788 0 0
789789 1.00000i 1.00000i
790790 −1.73205 1.00000i −1.73205 1.00000i
791791 0 0
792792 0.866025 0.500000i 0.866025 0.500000i
793793 0 0
794794 0.500000 0.866025i 0.500000 0.866025i
795795 0.500000 0.866025i 0.500000 0.866025i
796796 −0.866025 + 0.500000i −0.866025 + 0.500000i
797797 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
798798 0 0
799799 0 0
800800 0 0
801801 0.500000 0.866025i 0.500000 0.866025i
802802 1.00000i 1.00000i
803803 −0.500000 + 0.866025i −0.500000 + 0.866025i
804804 0 0
805805 0 0
806806 0 0
807807 −0.866025 + 0.500000i −0.866025 + 0.500000i
808808 −0.500000 + 0.866025i −0.500000 + 0.866025i
809809 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
810810 −0.500000 0.866025i −0.500000 0.866025i
811811 2.00000 2.00000 1.00000 00
1.00000 00
812812 0 0
813813 0.866025 0.500000i 0.866025 0.500000i
814814 −0.500000 0.866025i −0.500000 0.866025i
815815 −0.866025 + 0.500000i −0.866025 + 0.500000i
816816 1.00000 1.00000
817817 −0.500000 + 0.866025i −0.500000 + 0.866025i
818818 0 0
819819 0 0
820820 1.00000i 1.00000i
821821 −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 0.500000i 0.833333π-0.833333\pi
822822 −0.866025 0.500000i −0.866025 0.500000i
823823 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
824824 −0.500000 0.866025i −0.500000 0.866025i
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 −0.866025 + 0.500000i −0.866025 + 0.500000i
829829 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
830830 −0.500000 + 0.866025i −0.500000 + 0.866025i
831831 1.00000i 1.00000i
832832 0.866025 0.500000i 0.866025 0.500000i
833833 0 0
834834 0.866025 0.500000i 0.866025 0.500000i
835835 0.500000 0.866025i 0.500000 0.866025i
836836 −1.00000 −1.00000
837837 0 0
838838 1.00000i 1.00000i
839839 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
840840 0 0
841841 0 0
842842 −0.500000 0.866025i −0.500000 0.866025i
843843 1.00000 1.00000
844844 −0.500000 + 0.866025i −0.500000 + 0.866025i
845845 0 0
846846 0 0
847847 0 0
848848 0.866025 + 0.500000i 0.866025 + 0.500000i
849849 0 0
850850 0 0
851851 0.500000 + 0.866025i 0.500000 + 0.866025i
852852 0 0
853853 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
854854 0 0
855855 1.00000i 1.00000i
856856 1.00000i 1.00000i
857857 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
858858 −1.00000 −1.00000
859859 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
860860 −0.866025 + 0.500000i −0.866025 + 0.500000i
861861 0 0
862862 −0.500000 + 0.866025i −0.500000 + 0.866025i
863863 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
864864 0.866025 0.500000i 0.866025 0.500000i
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 −1.73205 + 1.00000i −1.73205 + 1.00000i
870870 1.00000i 1.00000i
871871 0 0
872872 1.00000 1.00000
873873 0.500000 + 0.866025i 0.500000 + 0.866025i
874874 1.00000 1.00000
875875 0 0
876876 −0.500000 + 0.866025i −0.500000 + 0.866025i
877877 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
878878 1.00000 + 1.73205i 1.00000 + 1.73205i
879879 −0.866025 0.500000i −0.866025 0.500000i
880880 −0.866025 0.500000i −0.866025 0.500000i
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
884884 −0.866025 0.500000i −0.866025 0.500000i
885885 0 0
886886 0 0
887887 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
888888 −0.500000 0.866025i −0.500000 0.866025i
889889 0 0
890890 −1.00000 −1.00000
891891 −1.00000 −1.00000
892892 1.00000i 1.00000i
893893 0 0
894894 −0.500000 0.866025i −0.500000 0.866025i
895895 0.866025 0.500000i 0.866025 0.500000i
896896 0 0
897897 1.00000 1.00000
898898 0 0
899899 0 0
900900 0 0
901901 1.00000i 1.00000i
902902 0.866025 + 0.500000i 0.866025 + 0.500000i
903903 0 0
904904 −0.866025 + 0.500000i −0.866025 + 0.500000i
905905 1.00000 + 1.73205i 1.00000 + 1.73205i
906906 0.500000 0.866025i 0.500000 0.866025i
907907 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
908908 −1.00000 −1.00000
909909 0.866025 0.500000i 0.866025 0.500000i
910910 0 0
911911 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
912912 −1.00000 −1.00000
913913 0.500000 + 0.866025i 0.500000 + 0.866025i
914914 −1.73205 + 1.00000i −1.73205 + 1.00000i
915915 0 0
916916 0.866025 + 0.500000i 0.866025 + 0.500000i
917917 0 0
918918 −0.866025 0.500000i −0.866025 0.500000i
919919 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
920920 0.866025 + 0.500000i 0.866025 + 0.500000i
921921 0 0
922922 −0.500000 0.866025i −0.500000 0.866025i
923923 0 0
924924 0 0
925925 0 0
926926 1.00000 1.00000
927927 1.00000i 1.00000i
928928 −1.00000 −1.00000
929929 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
930930 0 0
931931 0 0
932932 −0.500000 0.866025i −0.500000 0.866025i
933933 −1.73205 1.00000i −1.73205 1.00000i
934934 −0.866025 0.500000i −0.866025 0.500000i
935935 1.00000i 1.00000i
936936 −1.00000 −1.00000
937937 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
942942 0 0
943943 −0.866025 0.500000i −0.866025 0.500000i
944944 0 0
945945 0 0
946946 1.00000i 1.00000i
947947 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
948948 −1.73205 + 1.00000i −1.73205 + 1.00000i
949949 0.866025 0.500000i 0.866025 0.500000i
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 −0.500000 0.866025i −0.500000 0.866025i
955955 0 0
956956 0.866025 + 0.500000i 0.866025 + 0.500000i
957957 0.866025 + 0.500000i 0.866025 + 0.500000i
958958 −0.500000 0.866025i −0.500000 0.866025i
959959 0 0
960960 −0.866025 0.500000i −0.866025 0.500000i
961961 −0.500000 + 0.866025i −0.500000 + 0.866025i
962962 1.00000i 1.00000i
963963 0.500000 0.866025i 0.500000 0.866025i
964964 −1.00000 −1.00000
965965 0 0
966966 0 0
967967 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
968968 0 0
969969 0.500000 + 0.866025i 0.500000 + 0.866025i
970970 0.500000 0.866025i 0.500000 0.866025i
971971 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
972972 −1.00000 −1.00000
973973 0 0
974974 −0.500000 + 0.866025i −0.500000 + 0.866025i
975975 0 0
976976 0 0
977977 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
978978 1.00000i 1.00000i
979979 −0.500000 + 0.866025i −0.500000 + 0.866025i
980980 0 0
981981 −0.866025 0.500000i −0.866025 0.500000i
982982 1.00000i 1.00000i
983983 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
984984 0.866025 + 0.500000i 0.866025 + 0.500000i
985985 0 0
986986 0.500000 + 0.866025i 0.500000 + 0.866025i
987987 0 0
988988 0.866025 + 0.500000i 0.866025 + 0.500000i
989989 1.00000i 1.00000i
990990 0.500000 + 0.866025i 0.500000 + 0.866025i
991991 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
992992 0 0
993993 0 0
994994 0 0
995995 −0.500000 0.866025i −0.500000 0.866025i
996996 0.500000 + 0.866025i 0.500000 + 0.866025i
997997 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
998998 1.00000i 1.00000i
999999 1.00000i 1.00000i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3528.1.cg.c.2059.1 4
7.2 even 3 3528.1.ce.c.2419.2 4
7.3 odd 6 504.1.ba.a.331.2 yes 4
7.4 even 3 3528.1.ba.d.1843.2 4
7.5 odd 6 504.1.ce.a.403.2 yes 4
7.6 odd 2 3528.1.cg.d.2059.1 4
8.3 odd 2 inner 3528.1.cg.c.2059.2 4
9.4 even 3 inner 3528.1.cg.c.3235.2 4
21.5 even 6 1512.1.ce.a.235.1 4
21.17 even 6 1512.1.ba.a.667.1 4
28.3 even 6 2016.1.bi.a.79.2 4
28.19 even 6 2016.1.cm.a.655.1 4
56.3 even 6 504.1.ba.a.331.1 yes 4
56.5 odd 6 2016.1.cm.a.655.2 4
56.11 odd 6 3528.1.ba.d.1843.1 4
56.19 even 6 504.1.ce.a.403.1 yes 4
56.27 even 2 3528.1.cg.d.2059.2 4
56.45 odd 6 2016.1.bi.a.79.1 4
56.51 odd 6 3528.1.ce.c.2419.1 4
63.4 even 3 3528.1.ce.c.3019.2 4
63.5 even 6 1512.1.ba.a.739.2 4
63.13 odd 6 3528.1.cg.d.3235.2 4
63.31 odd 6 504.1.ce.a.499.2 yes 4
63.40 odd 6 504.1.ba.a.67.1 4
63.58 even 3 3528.1.ba.d.67.1 4
63.59 even 6 1512.1.ce.a.1171.1 4
72.67 odd 6 inner 3528.1.cg.c.3235.1 4
168.59 odd 6 1512.1.ba.a.667.2 4
168.131 odd 6 1512.1.ce.a.235.2 4
252.31 even 6 2016.1.cm.a.751.2 4
252.103 even 6 2016.1.bi.a.1327.2 4
504.59 odd 6 1512.1.ce.a.1171.2 4
504.67 odd 6 3528.1.ce.c.3019.1 4
504.131 odd 6 1512.1.ba.a.739.1 4
504.139 even 6 3528.1.cg.d.3235.1 4
504.157 odd 6 2016.1.cm.a.751.1 4
504.229 odd 6 2016.1.bi.a.1327.1 4
504.283 even 6 504.1.ce.a.499.1 yes 4
504.355 even 6 504.1.ba.a.67.2 yes 4
504.499 odd 6 3528.1.ba.d.67.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.1.ba.a.67.1 4 63.40 odd 6
504.1.ba.a.67.2 yes 4 504.355 even 6
504.1.ba.a.331.1 yes 4 56.3 even 6
504.1.ba.a.331.2 yes 4 7.3 odd 6
504.1.ce.a.403.1 yes 4 56.19 even 6
504.1.ce.a.403.2 yes 4 7.5 odd 6
504.1.ce.a.499.1 yes 4 504.283 even 6
504.1.ce.a.499.2 yes 4 63.31 odd 6
1512.1.ba.a.667.1 4 21.17 even 6
1512.1.ba.a.667.2 4 168.59 odd 6
1512.1.ba.a.739.1 4 504.131 odd 6
1512.1.ba.a.739.2 4 63.5 even 6
1512.1.ce.a.235.1 4 21.5 even 6
1512.1.ce.a.235.2 4 168.131 odd 6
1512.1.ce.a.1171.1 4 63.59 even 6
1512.1.ce.a.1171.2 4 504.59 odd 6
2016.1.bi.a.79.1 4 56.45 odd 6
2016.1.bi.a.79.2 4 28.3 even 6
2016.1.bi.a.1327.1 4 504.229 odd 6
2016.1.bi.a.1327.2 4 252.103 even 6
2016.1.cm.a.655.1 4 28.19 even 6
2016.1.cm.a.655.2 4 56.5 odd 6
2016.1.cm.a.751.1 4 504.157 odd 6
2016.1.cm.a.751.2 4 252.31 even 6
3528.1.ba.d.67.1 4 63.58 even 3
3528.1.ba.d.67.2 4 504.499 odd 6
3528.1.ba.d.1843.1 4 56.11 odd 6
3528.1.ba.d.1843.2 4 7.4 even 3
3528.1.ce.c.2419.1 4 56.51 odd 6
3528.1.ce.c.2419.2 4 7.2 even 3
3528.1.ce.c.3019.1 4 504.67 odd 6
3528.1.ce.c.3019.2 4 63.4 even 3
3528.1.cg.c.2059.1 4 1.1 even 1 trivial
3528.1.cg.c.2059.2 4 8.3 odd 2 inner
3528.1.cg.c.3235.1 4 72.67 odd 6 inner
3528.1.cg.c.3235.2 4 9.4 even 3 inner
3528.1.cg.d.2059.1 4 7.6 odd 2
3528.1.cg.d.2059.2 4 56.27 even 2
3528.1.cg.d.3235.1 4 504.139 even 6
3528.1.cg.d.3235.2 4 63.13 odd 6