Properties

Label 3528.1.cg.c.2059.1
Level $3528$
Weight $1$
Character 3528.2059
Analytic conductor $1.761$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3528,1,Mod(2059,3528)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3528, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3528.2059");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3528.cg (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.76070136457\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 504)
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.254016.3

Embedding invariants

Embedding label 2059.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 3528.2059
Dual form 3528.1.cg.c.3235.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-0.866025 + 0.500000i) q^{5} +1.00000i q^{6} -1.00000i q^{8} +(-0.500000 + 0.866025i) q^{9} +1.00000 q^{10} +(0.500000 - 0.866025i) q^{11} +(0.500000 - 0.866025i) q^{12} +(-0.866025 + 0.500000i) q^{13} +(0.866025 + 0.500000i) q^{15} +(-0.500000 + 0.866025i) q^{16} +1.00000 q^{17} +(0.866025 - 0.500000i) q^{18} -1.00000 q^{19} +(-0.866025 - 0.500000i) q^{20} +(-0.866025 + 0.500000i) q^{22} +(0.866025 - 0.500000i) q^{23} +(-0.866025 + 0.500000i) q^{24} +1.00000 q^{26} +1.00000 q^{27} +(-0.866025 - 0.500000i) q^{29} +(-0.500000 - 0.866025i) q^{30} +(0.866025 - 0.500000i) q^{32} -1.00000 q^{33} +(-0.866025 - 0.500000i) q^{34} -1.00000 q^{36} +1.00000i q^{37} +(0.866025 + 0.500000i) q^{38} +(0.866025 + 0.500000i) q^{39} +(0.500000 + 0.866025i) q^{40} +(-0.500000 - 0.866025i) q^{41} +(0.500000 - 0.866025i) q^{43} +1.00000 q^{44} -1.00000i q^{45} -1.00000 q^{46} +1.00000 q^{48} +(-0.500000 - 0.866025i) q^{51} +(-0.866025 - 0.500000i) q^{52} -1.00000i q^{53} +(-0.866025 - 0.500000i) q^{54} +1.00000i q^{55} +(0.500000 + 0.866025i) q^{57} +(0.500000 + 0.866025i) q^{58} +1.00000i q^{60} -1.00000 q^{64} +(0.500000 - 0.866025i) q^{65} +(0.866025 + 0.500000i) q^{66} +(0.500000 + 0.866025i) q^{68} +(-0.866025 - 0.500000i) q^{69} +(0.866025 + 0.500000i) q^{72} -1.00000 q^{73} +(0.500000 - 0.866025i) q^{74} +(-0.500000 - 0.866025i) q^{76} +(-0.500000 - 0.866025i) q^{78} +(-1.73205 - 1.00000i) q^{79} -1.00000i q^{80} +(-0.500000 - 0.866025i) q^{81} +1.00000i q^{82} +(-0.500000 + 0.866025i) q^{83} +(-0.866025 + 0.500000i) q^{85} +(-0.866025 + 0.500000i) q^{86} +1.00000i q^{87} +(-0.866025 - 0.500000i) q^{88} -1.00000 q^{89} +(-0.500000 + 0.866025i) q^{90} +(0.866025 + 0.500000i) q^{92} +(0.866025 - 0.500000i) q^{95} +(-0.866025 - 0.500000i) q^{96} +(0.500000 - 0.866025i) q^{97} +(0.500000 + 0.866025i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{4} - 2 q^{9} + 4 q^{10} + 2 q^{11} + 2 q^{12} - 2 q^{16} + 4 q^{17} - 4 q^{19} + 4 q^{26} + 4 q^{27} - 2 q^{30} - 4 q^{33} - 4 q^{36} + 2 q^{40} - 2 q^{41} + 2 q^{43} + 4 q^{44} - 4 q^{46}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(1765\) \(2647\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.866025 0.500000i
\(3\) −0.500000 0.866025i −0.500000 0.866025i
\(4\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(5\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(6\) 1.00000i 1.00000i
\(7\) 0 0
\(8\) 1.00000i 1.00000i
\(9\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(10\) 1.00000 1.00000
\(11\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(12\) 0.500000 0.866025i 0.500000 0.866025i
\(13\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(16\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(17\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 0.866025 0.500000i 0.866025 0.500000i
\(19\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) −0.866025 0.500000i −0.866025 0.500000i
\(21\) 0 0
\(22\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(23\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(25\) 0 0
\(26\) 1.00000 1.00000
\(27\) 1.00000 1.00000
\(28\) 0 0
\(29\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) −0.500000 0.866025i −0.500000 0.866025i
\(31\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(32\) 0.866025 0.500000i 0.866025 0.500000i
\(33\) −1.00000 −1.00000
\(34\) −0.866025 0.500000i −0.866025 0.500000i
\(35\) 0 0
\(36\) −1.00000 −1.00000
\(37\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(38\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(39\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(40\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(41\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(44\) 1.00000 1.00000
\(45\) 1.00000i 1.00000i
\(46\) −1.00000 −1.00000
\(47\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) 1.00000 1.00000
\(49\) 0 0
\(50\) 0 0
\(51\) −0.500000 0.866025i −0.500000 0.866025i
\(52\) −0.866025 0.500000i −0.866025 0.500000i
\(53\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(54\) −0.866025 0.500000i −0.866025 0.500000i
\(55\) 1.00000i 1.00000i
\(56\) 0 0
\(57\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(58\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 1.00000i 1.00000i
\(61\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −1.00000 −1.00000
\(65\) 0.500000 0.866025i 0.500000 0.866025i
\(66\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(67\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(68\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(69\) −0.866025 0.500000i −0.866025 0.500000i
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(73\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) 0.500000 0.866025i 0.500000 0.866025i
\(75\) 0 0
\(76\) −0.500000 0.866025i −0.500000 0.866025i
\(77\) 0 0
\(78\) −0.500000 0.866025i −0.500000 0.866025i
\(79\) −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 0.500000i \(-0.833333\pi\)
\(80\) 1.00000i 1.00000i
\(81\) −0.500000 0.866025i −0.500000 0.866025i
\(82\) 1.00000i 1.00000i
\(83\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(86\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(87\) 1.00000i 1.00000i
\(88\) −0.866025 0.500000i −0.866025 0.500000i
\(89\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(91\) 0 0
\(92\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(93\) 0 0
\(94\) 0 0
\(95\) 0.866025 0.500000i 0.866025 0.500000i
\(96\) −0.866025 0.500000i −0.866025 0.500000i
\(97\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(98\) 0 0
\(99\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(100\) 0 0
\(101\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 1.00000i 1.00000i
\(103\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(104\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(105\) 0 0
\(106\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(107\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(109\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(110\) 0.500000 0.866025i 0.500000 0.866025i
\(111\) 0.866025 0.500000i 0.866025 0.500000i
\(112\) 0 0
\(113\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(114\) 1.00000i 1.00000i
\(115\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(116\) 1.00000i 1.00000i
\(117\) 1.00000i 1.00000i
\(118\) 0 0
\(119\) 0 0
\(120\) 0.500000 0.866025i 0.500000 0.866025i
\(121\) 0 0
\(122\) 0 0
\(123\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(124\) 0 0
\(125\) 1.00000i 1.00000i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(129\) −1.00000 −1.00000
\(130\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(131\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(132\) −0.500000 0.866025i −0.500000 0.866025i
\(133\) 0 0
\(134\) 0 0
\(135\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(136\) 1.00000i 1.00000i
\(137\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(138\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(139\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.00000i 1.00000i
\(144\) −0.500000 0.866025i −0.500000 0.866025i
\(145\) 1.00000 1.00000
\(146\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(147\) 0 0
\(148\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(149\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(152\) 1.00000i 1.00000i
\(153\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(154\) 0 0
\(155\) 0 0
\(156\) 1.00000i 1.00000i
\(157\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(159\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(160\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(161\) 0 0
\(162\) 1.00000i 1.00000i
\(163\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(164\) 0.500000 0.866025i 0.500000 0.866025i
\(165\) 0.866025 0.500000i 0.866025 0.500000i
\(166\) 0.866025 0.500000i 0.866025 0.500000i
\(167\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 1.00000 1.00000
\(171\) 0.500000 0.866025i 0.500000 0.866025i
\(172\) 1.00000 1.00000
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 0.500000 0.866025i 0.500000 0.866025i
\(175\) 0 0
\(176\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(177\) 0 0
\(178\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(179\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 0.866025 0.500000i 0.866025 0.500000i
\(181\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −0.500000 0.866025i −0.500000 0.866025i
\(185\) −0.500000 0.866025i −0.500000 0.866025i
\(186\) 0 0
\(187\) 0.500000 0.866025i 0.500000 0.866025i
\(188\) 0 0
\(189\) 0 0
\(190\) −1.00000 −1.00000
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(193\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(194\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(195\) −1.00000 −1.00000
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 1.00000i 1.00000i
\(199\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(203\) 0 0
\(204\) 0.500000 0.866025i 0.500000 0.866025i
\(205\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(206\) −1.00000 −1.00000
\(207\) 1.00000i 1.00000i
\(208\) 1.00000i 1.00000i
\(209\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(210\) 0 0
\(211\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 0.866025 0.500000i 0.866025 0.500000i
\(213\) 0 0
\(214\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(215\) 1.00000i 1.00000i
\(216\) 1.00000i 1.00000i
\(217\) 0 0
\(218\) 0.500000 0.866025i 0.500000 0.866025i
\(219\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(220\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(221\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(222\) −1.00000 −1.00000
\(223\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 1.00000i 1.00000i
\(227\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(228\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(229\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(230\) 0.866025 0.500000i 0.866025 0.500000i
\(231\) 0 0
\(232\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(233\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(234\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(235\) 0 0
\(236\) 0 0
\(237\) 2.00000i 2.00000i
\(238\) 0 0
\(239\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(240\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(241\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(244\) 0 0
\(245\) 0 0
\(246\) 0.866025 0.500000i 0.866025 0.500000i
\(247\) 0.866025 0.500000i 0.866025 0.500000i
\(248\) 0 0
\(249\) 1.00000 1.00000
\(250\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 1.00000i 1.00000i
\(254\) 0 0
\(255\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(256\) −0.500000 0.866025i −0.500000 0.866025i
\(257\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(258\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(259\) 0 0
\(260\) 1.00000 1.00000
\(261\) 0.866025 0.500000i 0.866025 0.500000i
\(262\) 1.00000i 1.00000i
\(263\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(264\) 1.00000i 1.00000i
\(265\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(266\) 0 0
\(267\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(268\) 0 0
\(269\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(270\) 1.00000 1.00000
\(271\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(272\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(273\) 0 0
\(274\) 0.866025 0.500000i 0.866025 0.500000i
\(275\) 0 0
\(276\) 1.00000i 1.00000i
\(277\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(278\) 1.00000i 1.00000i
\(279\) 0 0
\(280\) 0 0
\(281\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(284\) 0 0
\(285\) −0.866025 0.500000i −0.866025 0.500000i
\(286\) 0.500000 0.866025i 0.500000 0.866025i
\(287\) 0 0
\(288\) 1.00000i 1.00000i
\(289\) 0 0
\(290\) −0.866025 0.500000i −0.866025 0.500000i
\(291\) −1.00000 −1.00000
\(292\) −0.500000 0.866025i −0.500000 0.866025i
\(293\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1.00000 1.00000
\(297\) 0.500000 0.866025i 0.500000 0.866025i
\(298\) 1.00000 1.00000
\(299\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(300\) 0 0
\(301\) 0 0
\(302\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(303\) 1.00000i 1.00000i
\(304\) 0.500000 0.866025i 0.500000 0.866025i
\(305\) 0 0
\(306\) 0.866025 0.500000i 0.866025 0.500000i
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) −0.866025 0.500000i −0.866025 0.500000i
\(310\) 0 0
\(311\) 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i \(-0.166667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(312\) 0.500000 0.866025i 0.500000 0.866025i
\(313\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 2.00000i 2.00000i
\(317\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 1.00000 1.00000
\(319\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(320\) 0.866025 0.500000i 0.866025 0.500000i
\(321\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(322\) 0 0
\(323\) −1.00000 −1.00000
\(324\) 0.500000 0.866025i 0.500000 0.866025i
\(325\) 0 0
\(326\) −0.866025 0.500000i −0.866025 0.500000i
\(327\) 0.866025 0.500000i 0.866025 0.500000i
\(328\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(329\) 0 0
\(330\) −1.00000 −1.00000
\(331\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(332\) −1.00000 −1.00000
\(333\) −0.866025 0.500000i −0.866025 0.500000i
\(334\) 1.00000 1.00000
\(335\) 0 0
\(336\) 0 0
\(337\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(340\) −0.866025 0.500000i −0.866025 0.500000i
\(341\) 0 0
\(342\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(343\) 0 0
\(344\) −0.866025 0.500000i −0.866025 0.500000i
\(345\) 1.00000 1.00000
\(346\) 0 0
\(347\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(349\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(350\) 0 0
\(351\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(352\) 1.00000i 1.00000i
\(353\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.500000 0.866025i −0.500000 0.866025i
\(357\) 0 0
\(358\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(359\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(360\) −1.00000 −1.00000
\(361\) 0 0
\(362\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(363\) 0 0
\(364\) 0 0
\(365\) 0.866025 0.500000i 0.866025 0.500000i
\(366\) 0 0
\(367\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(368\) 1.00000i 1.00000i
\(369\) 1.00000 1.00000
\(370\) 1.00000i 1.00000i
\(371\) 0 0
\(372\) 0 0
\(373\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(374\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(375\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(376\) 0 0
\(377\) 1.00000 1.00000
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(381\) 0 0
\(382\) 0 0
\(383\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(384\) 1.00000i 1.00000i
\(385\) 0 0
\(386\) 0 0
\(387\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(388\) 1.00000 1.00000
\(389\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(390\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(391\) 0.866025 0.500000i 0.866025 0.500000i
\(392\) 0 0
\(393\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(394\) 0 0
\(395\) 2.00000 2.00000
\(396\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(397\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(398\) 0.500000 0.866025i 0.500000 0.866025i
\(399\) 0 0
\(400\) 0 0
\(401\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 1.00000i 1.00000i
\(405\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(406\) 0 0
\(407\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(408\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(409\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(410\) −0.500000 0.866025i −0.500000 0.866025i
\(411\) 1.00000 1.00000
\(412\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(413\) 0 0
\(414\) 0.500000 0.866025i 0.500000 0.866025i
\(415\) 1.00000i 1.00000i
\(416\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(417\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(418\) 0.866025 0.500000i 0.866025 0.500000i
\(419\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(422\) 1.00000i 1.00000i
\(423\) 0 0
\(424\) −1.00000 −1.00000
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −0.500000 0.866025i −0.500000 0.866025i
\(429\) 0.866025 0.500000i 0.866025 0.500000i
\(430\) 0.500000 0.866025i 0.500000 0.866025i
\(431\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(432\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) −0.500000 0.866025i −0.500000 0.866025i
\(436\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(437\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(438\) 1.00000i 1.00000i
\(439\) −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 0.500000i \(-0.833333\pi\)
\(440\) 1.00000 1.00000
\(441\) 0 0
\(442\) 1.00000 1.00000
\(443\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(444\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(445\) 0.866025 0.500000i 0.866025 0.500000i
\(446\) −0.500000 0.866025i −0.500000 0.866025i
\(447\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) −1.00000 −1.00000
\(452\) 0.500000 0.866025i 0.500000 0.866025i
\(453\) 1.00000i 1.00000i
\(454\) 0.866025 0.500000i 0.866025 0.500000i
\(455\) 0 0
\(456\) 0.866025 0.500000i 0.866025 0.500000i
\(457\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(458\) −1.00000 −1.00000
\(459\) 1.00000 1.00000
\(460\) −1.00000 −1.00000
\(461\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(464\) 0.866025 0.500000i 0.866025 0.500000i
\(465\) 0 0
\(466\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(467\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(468\) 0.866025 0.500000i 0.866025 0.500000i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.500000 0.866025i −0.500000 0.866025i
\(474\) 1.00000 1.73205i 1.00000 1.73205i
\(475\) 0 0
\(476\) 0 0
\(477\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(478\) −1.00000 −1.00000
\(479\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(480\) 1.00000 1.00000
\(481\) −0.500000 0.866025i −0.500000 0.866025i
\(482\) 0.866025 0.500000i 0.866025 0.500000i
\(483\) 0 0
\(484\) 0 0
\(485\) 1.00000i 1.00000i
\(486\) 0.866025 0.500000i 0.866025 0.500000i
\(487\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(488\) 0 0
\(489\) −0.500000 0.866025i −0.500000 0.866025i
\(490\) 0 0
\(491\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(492\) −1.00000 −1.00000
\(493\) −0.866025 0.500000i −0.866025 0.500000i
\(494\) −1.00000 −1.00000
\(495\) −0.866025 0.500000i −0.866025 0.500000i
\(496\) 0 0
\(497\) 0 0
\(498\) −0.866025 0.500000i −0.866025 0.500000i
\(499\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(500\) 0.866025 0.500000i 0.866025 0.500000i
\(501\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 1.00000 1.00000
\(506\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(507\) 0 0
\(508\) 0 0
\(509\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(510\) −0.500000 0.866025i −0.500000 0.866025i
\(511\) 0 0
\(512\) 1.00000i 1.00000i
\(513\) −1.00000 −1.00000
\(514\) 1.00000i 1.00000i
\(515\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(516\) −0.500000 0.866025i −0.500000 0.866025i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −0.866025 0.500000i −0.866025 0.500000i
\(521\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) −1.00000 −1.00000
\(523\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(524\) 0.500000 0.866025i 0.500000 0.866025i
\(525\) 0 0
\(526\) −0.500000 0.866025i −0.500000 0.866025i
\(527\) 0 0
\(528\) 0.500000 0.866025i 0.500000 0.866025i
\(529\) 0 0
\(530\) 1.00000i 1.00000i
\(531\) 0 0
\(532\) 0 0
\(533\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(534\) 1.00000i 1.00000i
\(535\) 0.866025 0.500000i 0.866025 0.500000i
\(536\) 0 0
\(537\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(538\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(539\) 0 0
\(540\) −0.866025 0.500000i −0.866025 0.500000i
\(541\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(542\) 0.500000 0.866025i 0.500000 0.866025i
\(543\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(544\) 0.866025 0.500000i 0.866025 0.500000i
\(545\) −0.500000 0.866025i −0.500000 0.866025i
\(546\) 0 0
\(547\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(548\) −1.00000 −1.00000
\(549\) 0 0
\(550\) 0 0
\(551\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(552\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(553\) 0 0
\(554\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(555\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(556\) 0.500000 0.866025i 0.500000 0.866025i
\(557\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(558\) 0 0
\(559\) 1.00000i 1.00000i
\(560\) 0 0
\(561\) −1.00000 −1.00000
\(562\) 0.866025 0.500000i 0.866025 0.500000i
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(571\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(572\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.500000 0.866025i 0.500000 0.866025i
\(577\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(581\) 0 0
\(582\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(583\) −0.866025 0.500000i −0.866025 0.500000i
\(584\) 1.00000i 1.00000i
\(585\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(586\) −1.00000 −1.00000
\(587\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −0.866025 0.500000i −0.866025 0.500000i
\(593\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(594\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(595\) 0 0
\(596\) −0.866025 0.500000i −0.866025 0.500000i
\(597\) 0.866025 0.500000i 0.866025 0.500000i
\(598\) 0.866025 0.500000i 0.866025 0.500000i
\(599\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) 0 0
\(601\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1.00000i 1.00000i
\(605\) 0 0
\(606\) 0.500000 0.866025i 0.500000 0.866025i
\(607\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(608\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −1.00000 −1.00000
\(613\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(614\) 0 0
\(615\) 1.00000i 1.00000i
\(616\) 0 0
\(617\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(618\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(619\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(620\) 0 0
\(621\) 0.866025 0.500000i 0.866025 0.500000i
\(622\) −2.00000 −2.00000
\(623\) 0 0
\(624\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(625\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(626\) 0 0
\(627\) 1.00000 1.00000
\(628\) 0 0
\(629\) 1.00000i 1.00000i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(633\) 0.500000 0.866025i 0.500000 0.866025i
\(634\) 0 0
\(635\) 0 0
\(636\) −0.866025 0.500000i −0.866025 0.500000i
\(637\) 0 0
\(638\) 1.00000 1.00000
\(639\) 0 0
\(640\) −1.00000 −1.00000
\(641\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(642\) 1.00000i 1.00000i
\(643\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(644\) 0 0
\(645\) 0.866025 0.500000i 0.866025 0.500000i
\(646\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(647\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(648\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(653\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(654\) −1.00000 −1.00000
\(655\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(656\) 1.00000 1.00000
\(657\) 0.500000 0.866025i 0.500000 0.866025i
\(658\) 0 0
\(659\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(660\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(661\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(662\) 0 0
\(663\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(664\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(665\) 0 0
\(666\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(667\) −1.00000 −1.00000
\(668\) −0.866025 0.500000i −0.866025 0.500000i
\(669\) 1.00000i 1.00000i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(674\) 1.00000i 1.00000i
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(678\) 0.866025 0.500000i 0.866025 0.500000i
\(679\) 0 0
\(680\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(681\) 1.00000 1.00000
\(682\) 0 0
\(683\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(684\) 1.00000 1.00000
\(685\) 1.00000i 1.00000i
\(686\) 0 0
\(687\) −0.866025 0.500000i −0.866025 0.500000i
\(688\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(689\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(690\) −0.866025 0.500000i −0.866025 0.500000i
\(691\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(696\) 1.00000 1.00000
\(697\) −0.500000 0.866025i −0.500000 0.866025i
\(698\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(699\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 1.00000 1.00000
\(703\) 1.00000i 1.00000i
\(704\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(705\) 0 0
\(706\) 0.866025 0.500000i 0.866025 0.500000i
\(707\) 0 0
\(708\) 0 0
\(709\) 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(710\) 0 0
\(711\) 1.73205 1.00000i 1.73205 1.00000i
\(712\) 1.00000i 1.00000i
\(713\) 0 0
\(714\) 0 0
\(715\) −0.500000 0.866025i −0.500000 0.866025i
\(716\) −0.500000 0.866025i −0.500000 0.866025i
\(717\) −0.866025 0.500000i −0.866025 0.500000i
\(718\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(719\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(720\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(721\) 0 0
\(722\) 0 0
\(723\) 1.00000 1.00000
\(724\) 1.73205 1.00000i 1.73205 1.00000i
\(725\) 0 0
\(726\) 0 0
\(727\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) −1.00000 −1.00000
\(731\) 0.500000 0.866025i 0.500000 0.866025i
\(732\) 0 0
\(733\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(734\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(735\) 0 0
\(736\) 0.500000 0.866025i 0.500000 0.866025i
\(737\) 0 0
\(738\) −0.866025 0.500000i −0.866025 0.500000i
\(739\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) 0.500000 0.866025i 0.500000 0.866025i
\(741\) −0.866025 0.500000i −0.866025 0.500000i
\(742\) 0 0
\(743\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0.500000 0.866025i 0.500000 0.866025i
\(746\) −1.00000 −1.00000
\(747\) −0.500000 0.866025i −0.500000 0.866025i
\(748\) 1.00000 1.00000
\(749\) 0 0
\(750\) 1.00000 1.00000
\(751\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −0.866025 0.500000i −0.866025 0.500000i
\(755\) 1.00000 1.00000
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(760\) −0.500000 0.866025i −0.500000 0.866025i
\(761\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.00000i 1.00000i
\(766\) −1.00000 −1.00000
\(767\) 0 0
\(768\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(769\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(772\) 0 0
\(773\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(774\) 1.00000i 1.00000i
\(775\) 0 0
\(776\) −0.866025 0.500000i −0.866025 0.500000i
\(777\) 0 0
\(778\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(779\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(780\) −0.500000 0.866025i −0.500000 0.866025i
\(781\) 0 0
\(782\) −1.00000 −1.00000
\(783\) −0.866025 0.500000i −0.866025 0.500000i
\(784\) 0 0
\(785\) 0 0
\(786\) 0.866025 0.500000i 0.866025 0.500000i
\(787\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(788\) 0 0
\(789\) 1.00000i 1.00000i
\(790\) −1.73205 1.00000i −1.73205 1.00000i
\(791\) 0 0
\(792\) 0.866025 0.500000i 0.866025 0.500000i
\(793\) 0 0
\(794\) 0.500000 0.866025i 0.500000 0.866025i
\(795\) 0.500000 0.866025i 0.500000 0.866025i
\(796\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(797\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0.500000 0.866025i 0.500000 0.866025i
\(802\) 1.00000i 1.00000i
\(803\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(808\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(809\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(810\) −0.500000 0.866025i −0.500000 0.866025i
\(811\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(812\) 0 0
\(813\) 0.866025 0.500000i 0.866025 0.500000i
\(814\) −0.500000 0.866025i −0.500000 0.866025i
\(815\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(816\) 1.00000 1.00000
\(817\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(818\) 0 0
\(819\) 0 0
\(820\) 1.00000i 1.00000i
\(821\) −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 0.500000i \(-0.833333\pi\)
\(822\) −0.866025 0.500000i −0.866025 0.500000i
\(823\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) −0.500000 0.866025i −0.500000 0.866025i
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(829\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(830\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(831\) 1.00000i 1.00000i
\(832\) 0.866025 0.500000i 0.866025 0.500000i
\(833\) 0 0
\(834\) 0.866025 0.500000i 0.866025 0.500000i
\(835\) 0.500000 0.866025i 0.500000 0.866025i
\(836\) −1.00000 −1.00000
\(837\) 0 0
\(838\) 1.00000i 1.00000i
\(839\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) −0.500000 0.866025i −0.500000 0.866025i
\(843\) 1.00000 1.00000
\(844\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(849\) 0 0
\(850\) 0 0
\(851\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(852\) 0 0
\(853\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 1.00000i 1.00000i
\(856\) 1.00000i 1.00000i
\(857\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(858\) −1.00000 −1.00000
\(859\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(860\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(861\) 0 0
\(862\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(863\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(864\) 0.866025 0.500000i 0.866025 0.500000i
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(870\) 1.00000i 1.00000i
\(871\) 0 0
\(872\) 1.00000 1.00000
\(873\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(874\) 1.00000 1.00000
\(875\) 0 0
\(876\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(877\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(878\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(879\) −0.866025 0.500000i −0.866025 0.500000i
\(880\) −0.866025 0.500000i −0.866025 0.500000i
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) −0.866025 0.500000i −0.866025 0.500000i
\(885\) 0 0
\(886\) 0 0
\(887\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(888\) −0.500000 0.866025i −0.500000 0.866025i
\(889\) 0 0
\(890\) −1.00000 −1.00000
\(891\) −1.00000 −1.00000
\(892\) 1.00000i 1.00000i
\(893\) 0 0
\(894\) −0.500000 0.866025i −0.500000 0.866025i
\(895\) 0.866025 0.500000i 0.866025 0.500000i
\(896\) 0 0
\(897\) 1.00000 1.00000
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 1.00000i 1.00000i
\(902\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(903\) 0 0
\(904\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(905\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(906\) 0.500000 0.866025i 0.500000 0.866025i
\(907\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(908\) −1.00000 −1.00000
\(909\) 0.866025 0.500000i 0.866025 0.500000i
\(910\) 0 0
\(911\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(912\) −1.00000 −1.00000
\(913\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(914\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(915\) 0 0
\(916\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(917\) 0 0
\(918\) −0.866025 0.500000i −0.866025 0.500000i
\(919\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(920\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(921\) 0 0
\(922\) −0.500000 0.866025i −0.500000 0.866025i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 1.00000 1.00000
\(927\) 1.00000i 1.00000i
\(928\) −1.00000 −1.00000
\(929\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −0.500000 0.866025i −0.500000 0.866025i
\(933\) −1.73205 1.00000i −1.73205 1.00000i
\(934\) −0.866025 0.500000i −0.866025 0.500000i
\(935\) 1.00000i 1.00000i
\(936\) −1.00000 −1.00000
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(942\) 0 0
\(943\) −0.866025 0.500000i −0.866025 0.500000i
\(944\) 0 0
\(945\) 0 0
\(946\) 1.00000i 1.00000i
\(947\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(948\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(949\) 0.866025 0.500000i 0.866025 0.500000i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) −0.500000 0.866025i −0.500000 0.866025i
\(955\) 0 0
\(956\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(957\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(958\) −0.500000 0.866025i −0.500000 0.866025i
\(959\) 0 0
\(960\) −0.866025 0.500000i −0.866025 0.500000i
\(961\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(962\) 1.00000i 1.00000i
\(963\) 0.500000 0.866025i 0.500000 0.866025i
\(964\) −1.00000 −1.00000
\(965\) 0 0
\(966\) 0 0
\(967\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(968\) 0 0
\(969\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(970\) 0.500000 0.866025i 0.500000 0.866025i
\(971\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(972\) −1.00000 −1.00000
\(973\) 0 0
\(974\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(978\) 1.00000i 1.00000i
\(979\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(980\) 0 0
\(981\) −0.866025 0.500000i −0.866025 0.500000i
\(982\) 1.00000i 1.00000i
\(983\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(984\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(985\) 0 0
\(986\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(987\) 0 0
\(988\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(989\) 1.00000i 1.00000i
\(990\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(991\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.500000 0.866025i −0.500000 0.866025i
\(996\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(997\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(998\) 1.00000i 1.00000i
\(999\) 1.00000i 1.00000i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3528.1.cg.c.2059.1 4
7.2 even 3 3528.1.ce.c.2419.2 4
7.3 odd 6 504.1.ba.a.331.2 yes 4
7.4 even 3 3528.1.ba.d.1843.2 4
7.5 odd 6 504.1.ce.a.403.2 yes 4
7.6 odd 2 3528.1.cg.d.2059.1 4
8.3 odd 2 inner 3528.1.cg.c.2059.2 4
9.4 even 3 inner 3528.1.cg.c.3235.2 4
21.5 even 6 1512.1.ce.a.235.1 4
21.17 even 6 1512.1.ba.a.667.1 4
28.3 even 6 2016.1.bi.a.79.2 4
28.19 even 6 2016.1.cm.a.655.1 4
56.3 even 6 504.1.ba.a.331.1 yes 4
56.5 odd 6 2016.1.cm.a.655.2 4
56.11 odd 6 3528.1.ba.d.1843.1 4
56.19 even 6 504.1.ce.a.403.1 yes 4
56.27 even 2 3528.1.cg.d.2059.2 4
56.45 odd 6 2016.1.bi.a.79.1 4
56.51 odd 6 3528.1.ce.c.2419.1 4
63.4 even 3 3528.1.ce.c.3019.2 4
63.5 even 6 1512.1.ba.a.739.2 4
63.13 odd 6 3528.1.cg.d.3235.2 4
63.31 odd 6 504.1.ce.a.499.2 yes 4
63.40 odd 6 504.1.ba.a.67.1 4
63.58 even 3 3528.1.ba.d.67.1 4
63.59 even 6 1512.1.ce.a.1171.1 4
72.67 odd 6 inner 3528.1.cg.c.3235.1 4
168.59 odd 6 1512.1.ba.a.667.2 4
168.131 odd 6 1512.1.ce.a.235.2 4
252.31 even 6 2016.1.cm.a.751.2 4
252.103 even 6 2016.1.bi.a.1327.2 4
504.59 odd 6 1512.1.ce.a.1171.2 4
504.67 odd 6 3528.1.ce.c.3019.1 4
504.131 odd 6 1512.1.ba.a.739.1 4
504.139 even 6 3528.1.cg.d.3235.1 4
504.157 odd 6 2016.1.cm.a.751.1 4
504.229 odd 6 2016.1.bi.a.1327.1 4
504.283 even 6 504.1.ce.a.499.1 yes 4
504.355 even 6 504.1.ba.a.67.2 yes 4
504.499 odd 6 3528.1.ba.d.67.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.1.ba.a.67.1 4 63.40 odd 6
504.1.ba.a.67.2 yes 4 504.355 even 6
504.1.ba.a.331.1 yes 4 56.3 even 6
504.1.ba.a.331.2 yes 4 7.3 odd 6
504.1.ce.a.403.1 yes 4 56.19 even 6
504.1.ce.a.403.2 yes 4 7.5 odd 6
504.1.ce.a.499.1 yes 4 504.283 even 6
504.1.ce.a.499.2 yes 4 63.31 odd 6
1512.1.ba.a.667.1 4 21.17 even 6
1512.1.ba.a.667.2 4 168.59 odd 6
1512.1.ba.a.739.1 4 504.131 odd 6
1512.1.ba.a.739.2 4 63.5 even 6
1512.1.ce.a.235.1 4 21.5 even 6
1512.1.ce.a.235.2 4 168.131 odd 6
1512.1.ce.a.1171.1 4 63.59 even 6
1512.1.ce.a.1171.2 4 504.59 odd 6
2016.1.bi.a.79.1 4 56.45 odd 6
2016.1.bi.a.79.2 4 28.3 even 6
2016.1.bi.a.1327.1 4 504.229 odd 6
2016.1.bi.a.1327.2 4 252.103 even 6
2016.1.cm.a.655.1 4 28.19 even 6
2016.1.cm.a.655.2 4 56.5 odd 6
2016.1.cm.a.751.1 4 504.157 odd 6
2016.1.cm.a.751.2 4 252.31 even 6
3528.1.ba.d.67.1 4 63.58 even 3
3528.1.ba.d.67.2 4 504.499 odd 6
3528.1.ba.d.1843.1 4 56.11 odd 6
3528.1.ba.d.1843.2 4 7.4 even 3
3528.1.ce.c.2419.1 4 56.51 odd 6
3528.1.ce.c.2419.2 4 7.2 even 3
3528.1.ce.c.3019.1 4 504.67 odd 6
3528.1.ce.c.3019.2 4 63.4 even 3
3528.1.cg.c.2059.1 4 1.1 even 1 trivial
3528.1.cg.c.2059.2 4 8.3 odd 2 inner
3528.1.cg.c.3235.1 4 72.67 odd 6 inner
3528.1.cg.c.3235.2 4 9.4 even 3 inner
3528.1.cg.d.2059.1 4 7.6 odd 2
3528.1.cg.d.2059.2 4 56.27 even 2
3528.1.cg.d.3235.1 4 504.139 even 6
3528.1.cg.d.3235.2 4 63.13 odd 6