Properties

Label 2016.1.cm.a.655.2
Level 20162016
Weight 11
Character 2016.655
Analytic conductor 1.0061.006
Analytic rank 00
Dimension 44
Projective image A4A_{4}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2016,1,Mod(655,2016)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2016, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2016.655");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2016=25327 2016 = 2^{5} \cdot 3^{2} \cdot 7
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2016.cm (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.006115065471.00611506547
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 504)
Projective image: A4A_{4}
Projective field: Galois closure of 4.0.254016.3

Embedding invariants

Embedding label 655.2
Root 0.866025+0.500000i-0.866025 + 0.500000i of defining polynomial
Character χ\chi == 2016.655
Dual form 2016.1.cm.a.751.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000q3+(0.866025+0.500000i)q51.00000iq7+1.00000q9+(0.5000000.866025i)q11+(0.866025+0.500000i)q13+(0.866025+0.500000i)q15+(0.5000000.866025i)q17+(0.500000+0.866025i)q191.00000iq21+(0.8660250.500000i)q23+1.00000q27+(0.866025+0.500000i)q29+(0.5000000.866025i)q33+(0.5000000.866025i)q35+(0.866025+0.500000i)q37+(0.866025+0.500000i)q39+(0.500000+0.866025i)q41+(0.500000+0.866025i)q43+(0.866025+0.500000i)q451.00000q49+(0.5000000.866025i)q51+(0.8660250.500000i)q531.00000iq55+(0.500000+0.866025i)q571.00000iq631.00000q65+(0.8660250.500000i)q69+(0.500000+0.866025i)q73+(0.866025+0.500000i)q77+2.00000iq79+1.00000q81+(0.500000+0.866025i)q83+(0.8660250.500000i)q85+(0.866025+0.500000i)q87+(0.5000000.866025i)q89+(0.500000+0.866025i)q91+1.00000iq95+(0.500000+0.866025i)q97+(0.5000000.866025i)q99+O(q100)q+1.00000 q^{3} +(0.866025 + 0.500000i) q^{5} -1.00000i q^{7} +1.00000 q^{9} +(-0.500000 - 0.866025i) q^{11} +(-0.866025 + 0.500000i) q^{13} +(0.866025 + 0.500000i) q^{15} +(0.500000 - 0.866025i) q^{17} +(0.500000 + 0.866025i) q^{19} -1.00000i q^{21} +(-0.866025 - 0.500000i) q^{23} +1.00000 q^{27} +(0.866025 + 0.500000i) q^{29} +(-0.500000 - 0.866025i) q^{33} +(0.500000 - 0.866025i) q^{35} +(-0.866025 + 0.500000i) q^{37} +(-0.866025 + 0.500000i) q^{39} +(0.500000 + 0.866025i) q^{41} +(-0.500000 + 0.866025i) q^{43} +(0.866025 + 0.500000i) q^{45} -1.00000 q^{49} +(0.500000 - 0.866025i) q^{51} +(-0.866025 - 0.500000i) q^{53} -1.00000i q^{55} +(0.500000 + 0.866025i) q^{57} -1.00000i q^{63} -1.00000 q^{65} +(-0.866025 - 0.500000i) q^{69} +(-0.500000 + 0.866025i) q^{73} +(-0.866025 + 0.500000i) q^{77} +2.00000i q^{79} +1.00000 q^{81} +(-0.500000 + 0.866025i) q^{83} +(0.866025 - 0.500000i) q^{85} +(0.866025 + 0.500000i) q^{87} +(-0.500000 - 0.866025i) q^{89} +(0.500000 + 0.866025i) q^{91} +1.00000i q^{95} +(-0.500000 + 0.866025i) q^{97} +(-0.500000 - 0.866025i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q3+4q92q11+2q17+2q19+4q272q33+2q35+2q412q434q49+2q51+2q574q652q73+4q812q832q89+2q91+2q99+O(q100) 4 q + 4 q^{3} + 4 q^{9} - 2 q^{11} + 2 q^{17} + 2 q^{19} + 4 q^{27} - 2 q^{33} + 2 q^{35} + 2 q^{41} - 2 q^{43} - 4 q^{49} + 2 q^{51} + 2 q^{57} - 4 q^{65} - 2 q^{73} + 4 q^{81} - 2 q^{83} - 2 q^{89} + 2 q^{91}+ \cdots - 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2016Z)×\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times.

nn 127127 577577 17651765 17931793
χ(n)\chi(n) 1-1 e(23)e\left(\frac{2}{3}\right) 1-1 e(23)e\left(\frac{2}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 1.00000 1.00000
44 0 0
55 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
66 0 0
77 1.00000i 1.00000i
88 0 0
99 1.00000 1.00000
1010 0 0
1111 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
1212 0 0
1313 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
1414 0 0
1515 0.866025 + 0.500000i 0.866025 + 0.500000i
1616 0 0
1717 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
1818 0 0
1919 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
2020 0 0
2121 1.00000i 1.00000i
2222 0 0
2323 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
2424 0 0
2525 0 0
2626 0 0
2727 1.00000 1.00000
2828 0 0
2929 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 0 0
3333 −0.500000 0.866025i −0.500000 0.866025i
3434 0 0
3535 0.500000 0.866025i 0.500000 0.866025i
3636 0 0
3737 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
3838 0 0
3939 −0.866025 + 0.500000i −0.866025 + 0.500000i
4040 0 0
4141 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
4242 0 0
4343 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
4444 0 0
4545 0.866025 + 0.500000i 0.866025 + 0.500000i
4646 0 0
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 −1.00000 −1.00000
5050 0 0
5151 0.500000 0.866025i 0.500000 0.866025i
5252 0 0
5353 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
5454 0 0
5555 1.00000i 1.00000i
5656 0 0
5757 0.500000 + 0.866025i 0.500000 + 0.866025i
5858 0 0
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 1.00000i 1.00000i
6464 0 0
6565 −1.00000 −1.00000
6666 0 0
6767 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6868 0 0
6969 −0.866025 0.500000i −0.866025 0.500000i
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0 0
7373 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
7474 0 0
7575 0 0
7676 0 0
7777 −0.866025 + 0.500000i −0.866025 + 0.500000i
7878 0 0
7979 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
8080 0 0
8181 1.00000 1.00000
8282 0 0
8383 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
8484 0 0
8585 0.866025 0.500000i 0.866025 0.500000i
8686 0 0
8787 0.866025 + 0.500000i 0.866025 + 0.500000i
8888 0 0
8989 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
9090 0 0
9191 0.500000 + 0.866025i 0.500000 + 0.866025i
9292 0 0
9393 0 0
9494 0 0
9595 1.00000i 1.00000i
9696 0 0
9797 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
9898 0 0
9999 −0.500000 0.866025i −0.500000 0.866025i
100100 0 0
101101 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
102102 0 0
103103 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
104104 0 0
105105 0.500000 0.866025i 0.500000 0.866025i
106106 0 0
107107 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
108108 0 0
109109 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
110110 0 0
111111 −0.866025 + 0.500000i −0.866025 + 0.500000i
112112 0 0
113113 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
114114 0 0
115115 −0.500000 0.866025i −0.500000 0.866025i
116116 0 0
117117 −0.866025 + 0.500000i −0.866025 + 0.500000i
118118 0 0
119119 −0.866025 0.500000i −0.866025 0.500000i
120120 0 0
121121 0 0
122122 0 0
123123 0.500000 + 0.866025i 0.500000 + 0.866025i
124124 0 0
125125 1.00000i 1.00000i
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 0 0
129129 −0.500000 + 0.866025i −0.500000 + 0.866025i
130130 0 0
131131 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
132132 0 0
133133 0.866025 0.500000i 0.866025 0.500000i
134134 0 0
135135 0.866025 + 0.500000i 0.866025 + 0.500000i
136136 0 0
137137 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
138138 0 0
139139 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
140140 0 0
141141 0 0
142142 0 0
143143 0.866025 + 0.500000i 0.866025 + 0.500000i
144144 0 0
145145 0.500000 + 0.866025i 0.500000 + 0.866025i
146146 0 0
147147 −1.00000 −1.00000
148148 0 0
149149 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
150150 0 0
151151 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
152152 0 0
153153 0.500000 0.866025i 0.500000 0.866025i
154154 0 0
155155 0 0
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 0 0
159159 −0.866025 0.500000i −0.866025 0.500000i
160160 0 0
161161 −0.500000 + 0.866025i −0.500000 + 0.866025i
162162 0 0
163163 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
164164 0 0
165165 1.00000i 1.00000i
166166 0 0
167167 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
168168 0 0
169169 0 0
170170 0 0
171171 0.500000 + 0.866025i 0.500000 + 0.866025i
172172 0 0
173173 0 0 1.00000 00
−1.00000 π\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
180180 0 0
181181 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
182182 0 0
183183 0 0
184184 0 0
185185 −1.00000 −1.00000
186186 0 0
187187 −1.00000 −1.00000
188188 0 0
189189 1.00000i 1.00000i
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
194194 0 0
195195 −1.00000 −1.00000
196196 0 0
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 0 0
203203 0.500000 0.866025i 0.500000 0.866025i
204204 0 0
205205 1.00000i 1.00000i
206206 0 0
207207 −0.866025 0.500000i −0.866025 0.500000i
208208 0 0
209209 0.500000 0.866025i 0.500000 0.866025i
210210 0 0
211211 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
212212 0 0
213213 0 0
214214 0 0
215215 −0.866025 + 0.500000i −0.866025 + 0.500000i
216216 0 0
217217 0 0
218218 0 0
219219 −0.500000 + 0.866025i −0.500000 + 0.866025i
220220 0 0
221221 1.00000i 1.00000i
222222 0 0
223223 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
224224 0 0
225225 0 0
226226 0 0
227227 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
228228 0 0
229229 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
230230 0 0
231231 −0.866025 + 0.500000i −0.866025 + 0.500000i
232232 0 0
233233 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
234234 0 0
235235 0 0
236236 0 0
237237 2.00000i 2.00000i
238238 0 0
239239 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
240240 0 0
241241 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
242242 0 0
243243 1.00000 1.00000
244244 0 0
245245 −0.866025 0.500000i −0.866025 0.500000i
246246 0 0
247247 −0.866025 0.500000i −0.866025 0.500000i
248248 0 0
249249 −0.500000 + 0.866025i −0.500000 + 0.866025i
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 1.00000i 1.00000i
254254 0 0
255255 0.866025 0.500000i 0.866025 0.500000i
256256 0 0
257257 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
258258 0 0
259259 0.500000 + 0.866025i 0.500000 + 0.866025i
260260 0 0
261261 0.866025 + 0.500000i 0.866025 + 0.500000i
262262 0 0
263263 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 −0.500000 0.866025i −0.500000 0.866025i
266266 0 0
267267 −0.500000 0.866025i −0.500000 0.866025i
268268 0 0
269269 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
272272 0 0
273273 0.500000 + 0.866025i 0.500000 + 0.866025i
274274 0 0
275275 0 0
276276 0 0
277277 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
278278 0 0
279279 0 0
280280 0 0
281281 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
282282 0 0
283283 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
284284 0 0
285285 1.00000i 1.00000i
286286 0 0
287287 0.866025 0.500000i 0.866025 0.500000i
288288 0 0
289289 0 0
290290 0 0
291291 −0.500000 + 0.866025i −0.500000 + 0.866025i
292292 0 0
293293 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
294294 0 0
295295 0 0
296296 0 0
297297 −0.500000 0.866025i −0.500000 0.866025i
298298 0 0
299299 1.00000 1.00000
300300 0 0
301301 0.866025 + 0.500000i 0.866025 + 0.500000i
302302 0 0
303303 0.866025 0.500000i 0.866025 0.500000i
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 0.866025 + 0.500000i 0.866025 + 0.500000i
310310 0 0
311311 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
312312 0 0
313313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
314314 0 0
315315 0.500000 0.866025i 0.500000 0.866025i
316316 0 0
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 1.00000i 1.00000i
320320 0 0
321321 −0.500000 0.866025i −0.500000 0.866025i
322322 0 0
323323 1.00000 1.00000
324324 0 0
325325 0 0
326326 0 0
327327 0.866025 + 0.500000i 0.866025 + 0.500000i
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
332332 0 0
333333 −0.866025 + 0.500000i −0.866025 + 0.500000i
334334 0 0
335335 0 0
336336 0 0
337337 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
338338 0 0
339339 −0.500000 0.866025i −0.500000 0.866025i
340340 0 0
341341 0 0
342342 0 0
343343 1.00000i 1.00000i
344344 0 0
345345 −0.500000 0.866025i −0.500000 0.866025i
346346 0 0
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
350350 0 0
351351 −0.866025 + 0.500000i −0.866025 + 0.500000i
352352 0 0
353353 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
354354 0 0
355355 0 0
356356 0 0
357357 −0.866025 0.500000i −0.866025 0.500000i
358358 0 0
359359 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 0 0
362362 0 0
363363 0 0
364364 0 0
365365 −0.866025 + 0.500000i −0.866025 + 0.500000i
366366 0 0
367367 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
368368 0 0
369369 0.500000 + 0.866025i 0.500000 + 0.866025i
370370 0 0
371371 −0.500000 + 0.866025i −0.500000 + 0.866025i
372372 0 0
373373 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
374374 0 0
375375 1.00000i 1.00000i
376376 0 0
377377 −1.00000 −1.00000
378378 0 0
379379 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
380380 0 0
381381 0 0
382382 0 0
383383 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
384384 0 0
385385 −1.00000 −1.00000
386386 0 0
387387 −0.500000 + 0.866025i −0.500000 + 0.866025i
388388 0 0
389389 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
390390 0 0
391391 −0.866025 + 0.500000i −0.866025 + 0.500000i
392392 0 0
393393 −0.500000 + 0.866025i −0.500000 + 0.866025i
394394 0 0
395395 −1.00000 + 1.73205i −1.00000 + 1.73205i
396396 0 0
397397 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
398398 0 0
399399 0.866025 0.500000i 0.866025 0.500000i
400400 0 0
401401 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
402402 0 0
403403 0 0
404404 0 0
405405 0.866025 + 0.500000i 0.866025 + 0.500000i
406406 0 0
407407 0.866025 + 0.500000i 0.866025 + 0.500000i
408408 0 0
409409 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
410410 0 0
411411 −0.500000 0.866025i −0.500000 0.866025i
412412 0 0
413413 0 0
414414 0 0
415415 −0.866025 + 0.500000i −0.866025 + 0.500000i
416416 0 0
417417 −0.500000 0.866025i −0.500000 0.866025i
418418 0 0
419419 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
420420 0 0
421421 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0.866025 + 0.500000i 0.866025 + 0.500000i
430430 0 0
431431 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
434434 0 0
435435 0.500000 + 0.866025i 0.500000 + 0.866025i
436436 0 0
437437 1.00000i 1.00000i
438438 0 0
439439 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
440440 0 0
441441 −1.00000 −1.00000
442442 0 0
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 1.00000i 1.00000i
446446 0 0
447447 −0.866025 0.500000i −0.866025 0.500000i
448448 0 0
449449 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
450450 0 0
451451 0.500000 0.866025i 0.500000 0.866025i
452452 0 0
453453 0.866025 0.500000i 0.866025 0.500000i
454454 0 0
455455 1.00000i 1.00000i
456456 0 0
457457 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
458458 0 0
459459 0.500000 0.866025i 0.500000 0.866025i
460460 0 0
461461 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
464464 0 0
465465 0 0
466466 0 0
467467 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 1.00000 1.00000
474474 0 0
475475 0 0
476476 0 0
477477 −0.866025 0.500000i −0.866025 0.500000i
478478 0 0
479479 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
480480 0 0
481481 0.500000 0.866025i 0.500000 0.866025i
482482 0 0
483483 −0.500000 + 0.866025i −0.500000 + 0.866025i
484484 0 0
485485 −0.866025 + 0.500000i −0.866025 + 0.500000i
486486 0 0
487487 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
488488 0 0
489489 0.500000 + 0.866025i 0.500000 + 0.866025i
490490 0 0
491491 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
492492 0 0
493493 0.866025 0.500000i 0.866025 0.500000i
494494 0 0
495495 1.00000i 1.00000i
496496 0 0
497497 0 0
498498 0 0
499499 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
500500 0 0
501501 0.866025 0.500000i 0.866025 0.500000i
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 1.00000 1.00000
506506 0 0
507507 0 0
508508 0 0
509509 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
510510 0 0
511511 0.866025 + 0.500000i 0.866025 + 0.500000i
512512 0 0
513513 0.500000 + 0.866025i 0.500000 + 0.866025i
514514 0 0
515515 0.500000 + 0.866025i 0.500000 + 0.866025i
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
522522 0 0
523523 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 0 0
530530 0 0
531531 0 0
532532 0 0
533533 −0.866025 0.500000i −0.866025 0.500000i
534534 0 0
535535 1.00000i 1.00000i
536536 0 0
537537 −0.500000 + 0.866025i −0.500000 + 0.866025i
538538 0 0
539539 0.500000 + 0.866025i 0.500000 + 0.866025i
540540 0 0
541541 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
542542 0 0
543543 2.00000i 2.00000i
544544 0 0
545545 0.500000 + 0.866025i 0.500000 + 0.866025i
546546 0 0
547547 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
548548 0 0
549549 0 0
550550 0 0
551551 1.00000i 1.00000i
552552 0 0
553553 2.00000 2.00000
554554 0 0
555555 −1.00000 −1.00000
556556 0 0
557557 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
558558 0 0
559559 1.00000i 1.00000i
560560 0 0
561561 −1.00000 −1.00000
562562 0 0
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 1.00000i 1.00000i
566566 0 0
567567 1.00000i 1.00000i
568568 0 0
569569 2.00000 2.00000 1.00000 00
1.00000 00
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
578578 0 0
579579 0 0
580580 0 0
581581 0.866025 + 0.500000i 0.866025 + 0.500000i
582582 0 0
583583 1.00000i 1.00000i
584584 0 0
585585 −1.00000 −1.00000
586586 0 0
587587 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
594594 0 0
595595 −0.500000 0.866025i −0.500000 0.866025i
596596 0 0
597597 0.866025 + 0.500000i 0.866025 + 0.500000i
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
608608 0 0
609609 0.500000 0.866025i 0.500000 0.866025i
610610 0 0
611611 0 0
612612 0 0
613613 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
614614 0 0
615615 1.00000i 1.00000i
616616 0 0
617617 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
618618 0 0
619619 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
620620 0 0
621621 −0.866025 0.500000i −0.866025 0.500000i
622622 0 0
623623 −0.866025 + 0.500000i −0.866025 + 0.500000i
624624 0 0
625625 0.500000 0.866025i 0.500000 0.866025i
626626 0 0
627627 0.500000 0.866025i 0.500000 0.866025i
628628 0 0
629629 1.00000i 1.00000i
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 −0.500000 0.866025i −0.500000 0.866025i
634634 0 0
635635 0 0
636636 0 0
637637 0.866025 0.500000i 0.866025 0.500000i
638638 0 0
639639 0 0
640640 0 0
641641 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
642642 0 0
643643 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
644644 0 0
645645 −0.866025 + 0.500000i −0.866025 + 0.500000i
646646 0 0
647647 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
654654 0 0
655655 −0.866025 + 0.500000i −0.866025 + 0.500000i
656656 0 0
657657 −0.500000 + 0.866025i −0.500000 + 0.866025i
658658 0 0
659659 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 0 0
663663 1.00000i 1.00000i
664664 0 0
665665 1.00000 1.00000
666666 0 0
667667 −0.500000 0.866025i −0.500000 0.866025i
668668 0 0
669669 −0.866025 0.500000i −0.866025 0.500000i
670670 0 0
671671 0 0
672672 0 0
673673 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
674674 0 0
675675 0 0
676676 0 0
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0.866025 + 0.500000i 0.866025 + 0.500000i
680680 0 0
681681 −0.500000 0.866025i −0.500000 0.866025i
682682 0 0
683683 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
684684 0 0
685685 1.00000i 1.00000i
686686 0 0
687687 −0.866025 0.500000i −0.866025 0.500000i
688688 0 0
689689 1.00000 1.00000
690690 0 0
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 −0.866025 + 0.500000i −0.866025 + 0.500000i
694694 0 0
695695 1.00000i 1.00000i
696696 0 0
697697 1.00000 1.00000
698698 0 0
699699 0.500000 + 0.866025i 0.500000 + 0.866025i
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 −0.866025 0.500000i −0.866025 0.500000i
704704 0 0
705705 0 0
706706 0 0
707707 −0.500000 0.866025i −0.500000 0.866025i
708708 0 0
709709 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
710710 0 0
711711 2.00000i 2.00000i
712712 0 0
713713 0 0
714714 0 0
715715 0.500000 + 0.866025i 0.500000 + 0.866025i
716716 0 0
717717 0.866025 0.500000i 0.866025 0.500000i
718718 0 0
719719 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
720720 0 0
721721 0.500000 0.866025i 0.500000 0.866025i
722722 0 0
723723 0.500000 + 0.866025i 0.500000 + 0.866025i
724724 0 0
725725 0 0
726726 0 0
727727 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 1.00000 1.00000
730730 0 0
731731 0.500000 + 0.866025i 0.500000 + 0.866025i
732732 0 0
733733 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
734734 0 0
735735 −0.866025 0.500000i −0.866025 0.500000i
736736 0 0
737737 0 0
738738 0 0
739739 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
740740 0 0
741741 −0.866025 0.500000i −0.866025 0.500000i
742742 0 0
743743 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 −0.500000 0.866025i −0.500000 0.866025i
746746 0 0
747747 −0.500000 + 0.866025i −0.500000 + 0.866025i
748748 0 0
749749 −0.866025 + 0.500000i −0.866025 + 0.500000i
750750 0 0
751751 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
752752 0 0
753753 0 0
754754 0 0
755755 1.00000 1.00000
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 0 0
759759 1.00000i 1.00000i
760760 0 0
761761 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
762762 0 0
763763 0.500000 0.866025i 0.500000 0.866025i
764764 0 0
765765 0.866025 0.500000i 0.866025 0.500000i
766766 0 0
767767 0 0
768768 0 0
769769 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
770770 0 0
771771 0.500000 0.866025i 0.500000 0.866025i
772772 0 0
773773 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
774774 0 0
775775 0 0
776776 0 0
777777 0.500000 + 0.866025i 0.500000 + 0.866025i
778778 0 0
779779 −0.500000 + 0.866025i −0.500000 + 0.866025i
780780 0 0
781781 0 0
782782 0 0
783783 0.866025 + 0.500000i 0.866025 + 0.500000i
784784 0 0
785785 0 0
786786 0 0
787787 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
788788 0 0
789789 −0.866025 + 0.500000i −0.866025 + 0.500000i
790790 0 0
791791 −0.866025 + 0.500000i −0.866025 + 0.500000i
792792 0 0
793793 0 0
794794 0 0
795795 −0.500000 0.866025i −0.500000 0.866025i
796796 0 0
797797 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
798798 0 0
799799 0 0
800800 0 0
801801 −0.500000 0.866025i −0.500000 0.866025i
802802 0 0
803803 1.00000 1.00000
804804 0 0
805805 −0.866025 + 0.500000i −0.866025 + 0.500000i
806806 0 0
807807 0.866025 + 0.500000i 0.866025 + 0.500000i
808808 0 0
809809 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
810810 0 0
811811 2.00000 2.00000 1.00000 00
1.00000 00
812812 0 0
813813 −0.866025 + 0.500000i −0.866025 + 0.500000i
814814 0 0
815815 1.00000i 1.00000i
816816 0 0
817817 −1.00000 −1.00000
818818 0 0
819819 0.500000 + 0.866025i 0.500000 + 0.866025i
820820 0 0
821821 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
830830 0 0
831831 −0.866025 + 0.500000i −0.866025 + 0.500000i
832832 0 0
833833 −0.500000 + 0.866025i −0.500000 + 0.866025i
834834 0 0
835835 1.00000 1.00000
836836 0 0
837837 0 0
838838 0 0
839839 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 0 0
842842 0 0
843843 −0.500000 + 0.866025i −0.500000 + 0.866025i
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 1.00000 1.00000
852852 0 0
853853 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
854854 0 0
855855 1.00000i 1.00000i
856856 0 0
857857 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
858858 0 0
859859 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
860860 0 0
861861 0.866025 0.500000i 0.866025 0.500000i
862862 0 0
863863 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 1.73205 1.00000i 1.73205 1.00000i
870870 0 0
871871 0 0
872872 0 0
873873 −0.500000 + 0.866025i −0.500000 + 0.866025i
874874 0 0
875875 −1.00000 −1.00000
876876 0 0
877877 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
878878 0 0
879879 0.866025 0.500000i 0.866025 0.500000i
880880 0 0
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
884884 0 0
885885 0 0
886886 0 0
887887 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
888888 0 0
889889 0 0
890890 0 0
891891 −0.500000 0.866025i −0.500000 0.866025i
892892 0 0
893893 0 0
894894 0 0
895895 −0.866025 + 0.500000i −0.866025 + 0.500000i
896896 0 0
897897 1.00000 1.00000
898898 0 0
899899 0 0
900900 0 0
901901 −0.866025 + 0.500000i −0.866025 + 0.500000i
902902 0 0
903903 0.866025 + 0.500000i 0.866025 + 0.500000i
904904 0 0
905905 1.00000 1.73205i 1.00000 1.73205i
906906 0 0
907907 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
908908 0 0
909909 0.866025 0.500000i 0.866025 0.500000i
910910 0 0
911911 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
912912 0 0
913913 1.00000 1.00000
914914 0 0
915915 0 0
916916 0 0
917917 0.866025 + 0.500000i 0.866025 + 0.500000i
918918 0 0
919919 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0.866025 + 0.500000i 0.866025 + 0.500000i
928928 0 0
929929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
930930 0 0
931931 −0.500000 0.866025i −0.500000 0.866025i
932932 0 0
933933 2.00000i 2.00000i
934934 0 0
935935 −0.866025 0.500000i −0.866025 0.500000i
936936 0 0
937937 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 1.00000i 1.00000i
944944 0 0
945945 0.500000 0.866025i 0.500000 0.866025i
946946 0 0
947947 2.00000 2.00000 1.00000 00
1.00000 00
948948 0 0
949949 1.00000i 1.00000i
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 0 0
955955 0 0
956956 0 0
957957 1.00000i 1.00000i
958958 0 0
959959 −0.866025 + 0.500000i −0.866025 + 0.500000i
960960 0 0
961961 1.00000 1.00000
962962 0 0
963963 −0.500000 0.866025i −0.500000 0.866025i
964964 0 0
965965 0 0
966966 0 0
967967 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
968968 0 0
969969 1.00000 1.00000
970970 0 0
971971 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
972972 0 0
973973 −0.866025 + 0.500000i −0.866025 + 0.500000i
974974 0 0
975975 0 0
976976 0 0
977977 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
978978 0 0
979979 −0.500000 + 0.866025i −0.500000 + 0.866025i
980980 0 0
981981 0.866025 + 0.500000i 0.866025 + 0.500000i
982982 0 0
983983 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0.866025 0.500000i 0.866025 0.500000i
990990 0 0
991991 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
992992 0 0
993993 0 0
994994 0 0
995995 0.500000 + 0.866025i 0.500000 + 0.866025i
996996 0 0
997997 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
998998 0 0
999999 −0.866025 + 0.500000i −0.866025 + 0.500000i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.1.cm.a.655.2 4
4.3 odd 2 504.1.ce.a.403.1 yes 4
7.2 even 3 2016.1.bi.a.79.1 4
8.3 odd 2 inner 2016.1.cm.a.655.1 4
8.5 even 2 504.1.ce.a.403.2 yes 4
9.4 even 3 2016.1.bi.a.1327.1 4
12.11 even 2 1512.1.ce.a.235.2 4
24.5 odd 2 1512.1.ce.a.235.1 4
28.3 even 6 3528.1.cg.c.2059.2 4
28.11 odd 6 3528.1.cg.d.2059.2 4
28.19 even 6 3528.1.ba.d.1843.1 4
28.23 odd 6 504.1.ba.a.331.1 yes 4
28.27 even 2 3528.1.ce.c.2419.1 4
36.23 even 6 1512.1.ba.a.739.1 4
36.31 odd 6 504.1.ba.a.67.2 yes 4
56.5 odd 6 3528.1.ba.d.1843.2 4
56.13 odd 2 3528.1.ce.c.2419.2 4
56.37 even 6 504.1.ba.a.331.2 yes 4
56.45 odd 6 3528.1.cg.c.2059.1 4
56.51 odd 6 2016.1.bi.a.79.2 4
56.53 even 6 3528.1.cg.d.2059.1 4
63.58 even 3 inner 2016.1.cm.a.751.1 4
72.5 odd 6 1512.1.ba.a.739.2 4
72.13 even 6 504.1.ba.a.67.1 4
72.67 odd 6 2016.1.bi.a.1327.2 4
84.23 even 6 1512.1.ba.a.667.2 4
168.149 odd 6 1512.1.ba.a.667.1 4
252.23 even 6 1512.1.ce.a.1171.2 4
252.31 even 6 3528.1.cg.c.3235.1 4
252.67 odd 6 3528.1.cg.d.3235.1 4
252.103 even 6 3528.1.ce.c.3019.1 4
252.139 even 6 3528.1.ba.d.67.2 4
252.247 odd 6 504.1.ce.a.499.1 yes 4
504.13 odd 6 3528.1.ba.d.67.1 4
504.149 odd 6 1512.1.ce.a.1171.1 4
504.157 odd 6 3528.1.cg.c.3235.2 4
504.229 odd 6 3528.1.ce.c.3019.2 4
504.373 even 6 504.1.ce.a.499.2 yes 4
504.445 even 6 3528.1.cg.d.3235.2 4
504.499 odd 6 inner 2016.1.cm.a.751.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.1.ba.a.67.1 4 72.13 even 6
504.1.ba.a.67.2 yes 4 36.31 odd 6
504.1.ba.a.331.1 yes 4 28.23 odd 6
504.1.ba.a.331.2 yes 4 56.37 even 6
504.1.ce.a.403.1 yes 4 4.3 odd 2
504.1.ce.a.403.2 yes 4 8.5 even 2
504.1.ce.a.499.1 yes 4 252.247 odd 6
504.1.ce.a.499.2 yes 4 504.373 even 6
1512.1.ba.a.667.1 4 168.149 odd 6
1512.1.ba.a.667.2 4 84.23 even 6
1512.1.ba.a.739.1 4 36.23 even 6
1512.1.ba.a.739.2 4 72.5 odd 6
1512.1.ce.a.235.1 4 24.5 odd 2
1512.1.ce.a.235.2 4 12.11 even 2
1512.1.ce.a.1171.1 4 504.149 odd 6
1512.1.ce.a.1171.2 4 252.23 even 6
2016.1.bi.a.79.1 4 7.2 even 3
2016.1.bi.a.79.2 4 56.51 odd 6
2016.1.bi.a.1327.1 4 9.4 even 3
2016.1.bi.a.1327.2 4 72.67 odd 6
2016.1.cm.a.655.1 4 8.3 odd 2 inner
2016.1.cm.a.655.2 4 1.1 even 1 trivial
2016.1.cm.a.751.1 4 63.58 even 3 inner
2016.1.cm.a.751.2 4 504.499 odd 6 inner
3528.1.ba.d.67.1 4 504.13 odd 6
3528.1.ba.d.67.2 4 252.139 even 6
3528.1.ba.d.1843.1 4 28.19 even 6
3528.1.ba.d.1843.2 4 56.5 odd 6
3528.1.ce.c.2419.1 4 28.27 even 2
3528.1.ce.c.2419.2 4 56.13 odd 2
3528.1.ce.c.3019.1 4 252.103 even 6
3528.1.ce.c.3019.2 4 504.229 odd 6
3528.1.cg.c.2059.1 4 56.45 odd 6
3528.1.cg.c.2059.2 4 28.3 even 6
3528.1.cg.c.3235.1 4 252.31 even 6
3528.1.cg.c.3235.2 4 504.157 odd 6
3528.1.cg.d.2059.1 4 56.53 even 6
3528.1.cg.d.2059.2 4 28.11 odd 6
3528.1.cg.d.3235.1 4 252.67 odd 6
3528.1.cg.d.3235.2 4 504.445 even 6