Properties

Label 1512.1.ce.a.235.1
Level $1512$
Weight $1$
Character 1512.235
Analytic conductor $0.755$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1512,1,Mod(235,1512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1512, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1512.235");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1512.ce (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.754586299101\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 504)
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.254016.3

Embedding invariants

Embedding label 235.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1512.235
Dual form 1512.1.ce.a.1171.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +(0.866025 + 0.500000i) q^{5} -1.00000i q^{7} +1.00000i q^{8} +(0.500000 - 0.866025i) q^{10} +(-0.500000 - 0.866025i) q^{11} +(0.866025 - 0.500000i) q^{13} -1.00000 q^{14} +1.00000 q^{16} +(-0.500000 + 0.866025i) q^{17} +(-0.500000 - 0.866025i) q^{19} +(-0.866025 - 0.500000i) q^{20} +(-0.866025 + 0.500000i) q^{22} +(0.866025 + 0.500000i) q^{23} +(-0.500000 - 0.866025i) q^{26} +1.00000i q^{28} +(0.866025 + 0.500000i) q^{29} -1.00000i q^{32} +(0.866025 + 0.500000i) q^{34} +(0.500000 - 0.866025i) q^{35} +(0.866025 - 0.500000i) q^{37} +(-0.866025 + 0.500000i) q^{38} +(-0.500000 + 0.866025i) q^{40} +(-0.500000 - 0.866025i) q^{41} +(0.500000 - 0.866025i) q^{43} +(0.500000 + 0.866025i) q^{44} +(0.500000 - 0.866025i) q^{46} -1.00000 q^{49} +(-0.866025 + 0.500000i) q^{52} +(-0.866025 - 0.500000i) q^{53} -1.00000i q^{55} +1.00000 q^{56} +(0.500000 - 0.866025i) q^{58} -1.00000 q^{64} +1.00000 q^{65} +(0.500000 - 0.866025i) q^{68} +(-0.866025 - 0.500000i) q^{70} +(-0.500000 + 0.866025i) q^{73} +(-0.500000 - 0.866025i) q^{74} +(0.500000 + 0.866025i) q^{76} +(-0.866025 + 0.500000i) q^{77} +2.00000i q^{79} +(0.866025 + 0.500000i) q^{80} +(-0.866025 + 0.500000i) q^{82} +(-0.500000 + 0.866025i) q^{83} +(-0.866025 + 0.500000i) q^{85} +(-0.866025 - 0.500000i) q^{86} +(0.866025 - 0.500000i) q^{88} +(0.500000 + 0.866025i) q^{89} +(-0.500000 - 0.866025i) q^{91} +(-0.866025 - 0.500000i) q^{92} -1.00000i q^{95} +(-0.500000 + 0.866025i) q^{97} +1.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 2 q^{10} - 2 q^{11} - 4 q^{14} + 4 q^{16} - 2 q^{17} - 2 q^{19} - 2 q^{26} + 2 q^{35} - 2 q^{40} - 2 q^{41} + 2 q^{43} + 2 q^{44} + 2 q^{46} - 4 q^{49} + 4 q^{56} + 2 q^{58} - 4 q^{64} + 4 q^{65}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 1.00000i
\(3\) 0 0
\(4\) −1.00000 −1.00000
\(5\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 1.00000i 1.00000i
\(8\) 1.00000i 1.00000i
\(9\) 0 0
\(10\) 0.500000 0.866025i 0.500000 0.866025i
\(11\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(14\) −1.00000 −1.00000
\(15\) 0 0
\(16\) 1.00000 1.00000
\(17\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(20\) −0.866025 0.500000i −0.866025 0.500000i
\(21\) 0 0
\(22\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(23\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −0.500000 0.866025i −0.500000 0.866025i
\(27\) 0 0
\(28\) 1.00000i 1.00000i
\(29\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 1.00000i 1.00000i
\(33\) 0 0
\(34\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(35\) 0.500000 0.866025i 0.500000 0.866025i
\(36\) 0 0
\(37\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(38\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(39\) 0 0
\(40\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(41\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(44\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(45\) 0 0
\(46\) 0.500000 0.866025i 0.500000 0.866025i
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) −1.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(53\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(54\) 0 0
\(55\) 1.00000i 1.00000i
\(56\) 1.00000 1.00000
\(57\) 0 0
\(58\) 0.500000 0.866025i 0.500000 0.866025i
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −1.00000 −1.00000
\(65\) 1.00000 1.00000
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0.500000 0.866025i 0.500000 0.866025i
\(69\) 0 0
\(70\) −0.866025 0.500000i −0.866025 0.500000i
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(74\) −0.500000 0.866025i −0.500000 0.866025i
\(75\) 0 0
\(76\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(77\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(78\) 0 0
\(79\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(81\) 0 0
\(82\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(83\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(86\) −0.866025 0.500000i −0.866025 0.500000i
\(87\) 0 0
\(88\) 0.866025 0.500000i 0.866025 0.500000i
\(89\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) 0 0
\(91\) −0.500000 0.866025i −0.500000 0.866025i
\(92\) −0.866025 0.500000i −0.866025 0.500000i
\(93\) 0 0
\(94\) 0 0
\(95\) 1.00000i 1.00000i
\(96\) 0 0
\(97\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(98\) 1.00000i 1.00000i
\(99\) 0 0
\(100\) 0 0
\(101\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(104\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(105\) 0 0
\(106\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(107\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(110\) −1.00000 −1.00000
\(111\) 0 0
\(112\) 1.00000i 1.00000i
\(113\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 0 0
\(115\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(116\) −0.866025 0.500000i −0.866025 0.500000i
\(117\) 0 0
\(118\) 0 0
\(119\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 1.00000i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 1.00000i 1.00000i
\(129\) 0 0
\(130\) 1.00000i 1.00000i
\(131\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(134\) 0 0
\(135\) 0 0
\(136\) −0.866025 0.500000i −0.866025 0.500000i
\(137\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0 0
\(139\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(140\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(141\) 0 0
\(142\) 0 0
\(143\) −0.866025 0.500000i −0.866025 0.500000i
\(144\) 0 0
\(145\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(146\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(147\) 0 0
\(148\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(149\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) 0 0
\(151\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(152\) 0.866025 0.500000i 0.866025 0.500000i
\(153\) 0 0
\(154\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 2.00000 2.00000
\(159\) 0 0
\(160\) 0.500000 0.866025i 0.500000 0.866025i
\(161\) 0.500000 0.866025i 0.500000 0.866025i
\(162\) 0 0
\(163\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(164\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(165\) 0 0
\(166\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(167\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(171\) 0 0
\(172\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.500000 0.866025i −0.500000 0.866025i
\(177\) 0 0
\(178\) 0.866025 0.500000i 0.866025 0.500000i
\(179\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(183\) 0 0
\(184\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(185\) 1.00000 1.00000
\(186\) 0 0
\(187\) 1.00000 1.00000
\(188\) 0 0
\(189\) 0 0
\(190\) −1.00000 −1.00000
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(195\) 0 0
\(196\) 1.00000 1.00000
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −0.500000 0.866025i −0.500000 0.866025i
\(203\) 0.500000 0.866025i 0.500000 0.866025i
\(204\) 0 0
\(205\) 1.00000i 1.00000i
\(206\) 0.500000 0.866025i 0.500000 0.866025i
\(207\) 0 0
\(208\) 0.866025 0.500000i 0.866025 0.500000i
\(209\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(210\) 0 0
\(211\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(213\) 0 0
\(214\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(215\) 0.866025 0.500000i 0.866025 0.500000i
\(216\) 0 0
\(217\) 0 0
\(218\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(219\) 0 0
\(220\) 1.00000i 1.00000i
\(221\) 1.00000i 1.00000i
\(222\) 0 0
\(223\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(224\) −1.00000 −1.00000
\(225\) 0 0
\(226\) 0.866025 0.500000i 0.866025 0.500000i
\(227\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(230\) 0.866025 0.500000i 0.866025 0.500000i
\(231\) 0 0
\(232\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(233\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0.500000 0.866025i 0.500000 0.866025i
\(239\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.866025 0.500000i −0.866025 0.500000i
\(246\) 0 0
\(247\) −0.866025 0.500000i −0.866025 0.500000i
\(248\) 0 0
\(249\) 0 0
\(250\) −1.00000 −1.00000
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 1.00000i 1.00000i
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) −0.500000 0.866025i −0.500000 0.866025i
\(260\) −1.00000 −1.00000
\(261\) 0 0
\(262\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(263\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) 0 0
\(265\) −0.500000 0.866025i −0.500000 0.866025i
\(266\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(267\) 0 0
\(268\) 0 0
\(269\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(272\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(273\) 0 0
\(274\) 0.866025 0.500000i 0.866025 0.500000i
\(275\) 0 0
\(276\) 0 0
\(277\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(278\) 0.866025 0.500000i 0.866025 0.500000i
\(279\) 0 0
\(280\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(281\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(287\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(288\) 0 0
\(289\) 0 0
\(290\) 0.866025 0.500000i 0.866025 0.500000i
\(291\) 0 0
\(292\) 0.500000 0.866025i 0.500000 0.866025i
\(293\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(297\) 0 0
\(298\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(299\) 1.00000 1.00000
\(300\) 0 0
\(301\) −0.866025 0.500000i −0.866025 0.500000i
\(302\) −0.500000 0.866025i −0.500000 0.866025i
\(303\) 0 0
\(304\) −0.500000 0.866025i −0.500000 0.866025i
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0.866025 0.500000i 0.866025 0.500000i
\(309\) 0 0
\(310\) 0 0
\(311\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 2.00000i 2.00000i
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 1.00000i 1.00000i
\(320\) −0.866025 0.500000i −0.866025 0.500000i
\(321\) 0 0
\(322\) −0.866025 0.500000i −0.866025 0.500000i
\(323\) 1.00000 1.00000
\(324\) 0 0
\(325\) 0 0
\(326\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(327\) 0 0
\(328\) 0.866025 0.500000i 0.866025 0.500000i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0.500000 0.866025i 0.500000 0.866025i
\(333\) 0 0
\(334\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(335\) 0 0
\(336\) 0 0
\(337\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0.866025 0.500000i 0.866025 0.500000i
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000i 1.00000i
\(344\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(353\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.500000 0.866025i −0.500000 0.866025i
\(357\) 0 0
\(358\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(359\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 2.00000 2.00000
\(363\) 0 0
\(364\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(365\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(366\) 0 0
\(367\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(368\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(369\) 0 0
\(370\) 1.00000i 1.00000i
\(371\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(372\) 0 0
\(373\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(374\) 1.00000i 1.00000i
\(375\) 0 0
\(376\) 0 0
\(377\) 1.00000 1.00000
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 1.00000i 1.00000i
\(381\) 0 0
\(382\) 0 0
\(383\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 0 0
\(385\) −1.00000 −1.00000
\(386\) 0 0
\(387\) 0 0
\(388\) 0.500000 0.866025i 0.500000 0.866025i
\(389\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(392\) 1.00000i 1.00000i
\(393\) 0 0
\(394\) 0 0
\(395\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(396\) 0 0
\(397\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(398\) 0.500000 0.866025i 0.500000 0.866025i
\(399\) 0 0
\(400\) 0 0
\(401\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(402\) 0 0
\(403\) 0 0
\(404\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(405\) 0 0
\(406\) −0.866025 0.500000i −0.866025 0.500000i
\(407\) −0.866025 0.500000i −0.866025 0.500000i
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) −1.00000 −1.00000
\(411\) 0 0
\(412\) −0.866025 0.500000i −0.866025 0.500000i
\(413\) 0 0
\(414\) 0 0
\(415\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(416\) −0.500000 0.866025i −0.500000 0.866025i
\(417\) 0 0
\(418\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(419\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(422\) 0.866025 0.500000i 0.866025 0.500000i
\(423\) 0 0
\(424\) 0.500000 0.866025i 0.500000 0.866025i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(429\) 0 0
\(430\) −0.500000 0.866025i −0.500000 0.866025i
\(431\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(437\) 1.00000i 1.00000i
\(438\) 0 0
\(439\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(440\) 1.00000 1.00000
\(441\) 0 0
\(442\) 1.00000 1.00000
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 1.00000i 1.00000i
\(446\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(447\) 0 0
\(448\) 1.00000i 1.00000i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(452\) −0.500000 0.866025i −0.500000 0.866025i
\(453\) 0 0
\(454\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(455\) 1.00000i 1.00000i
\(456\) 0 0
\(457\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(458\) 0.500000 0.866025i 0.500000 0.866025i
\(459\) 0 0
\(460\) −0.500000 0.866025i −0.500000 0.866025i
\(461\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(464\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(465\) 0 0
\(466\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(467\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.00000 −1.00000
\(474\) 0 0
\(475\) 0 0
\(476\) −0.866025 0.500000i −0.866025 0.500000i
\(477\) 0 0
\(478\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(479\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0.500000 0.866025i 0.500000 0.866025i
\(482\) 0.866025 0.500000i 0.866025 0.500000i
\(483\) 0 0
\(484\) 0 0
\(485\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(486\) 0 0
\(487\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(491\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(492\) 0 0
\(493\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(494\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(500\) 1.00000i 1.00000i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 1.00000 1.00000
\(506\) −1.00000 −1.00000
\(507\) 0 0
\(508\) 0 0
\(509\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(510\) 0 0
\(511\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(512\) 1.00000i 1.00000i
\(513\) 0 0
\(514\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(515\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(516\) 0 0
\(517\) 0 0
\(518\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(519\) 0 0
\(520\) 1.00000i 1.00000i
\(521\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(524\) 0.500000 0.866025i 0.500000 0.866025i
\(525\) 0 0
\(526\) −0.500000 0.866025i −0.500000 0.866025i
\(527\) 0 0
\(528\) 0 0
\(529\) 0 0
\(530\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(531\) 0 0
\(532\) 0.866025 0.500000i 0.866025 0.500000i
\(533\) −0.866025 0.500000i −0.866025 0.500000i
\(534\) 0 0
\(535\) 1.00000i 1.00000i
\(536\) 0 0
\(537\) 0 0
\(538\) 0.500000 0.866025i 0.500000 0.866025i
\(539\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(540\) 0 0
\(541\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(542\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(543\) 0 0
\(544\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(545\) −0.500000 0.866025i −0.500000 0.866025i
\(546\) 0 0
\(547\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(548\) −0.500000 0.866025i −0.500000 0.866025i
\(549\) 0 0
\(550\) 0 0
\(551\) 1.00000i 1.00000i
\(552\) 0 0
\(553\) 2.00000 2.00000
\(554\) −0.500000 0.866025i −0.500000 0.866025i
\(555\) 0 0
\(556\) −0.500000 0.866025i −0.500000 0.866025i
\(557\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 1.00000i 1.00000i
\(560\) 0.500000 0.866025i 0.500000 0.866025i
\(561\) 0 0
\(562\) −0.866025 0.500000i −0.866025 0.500000i
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 1.00000i 1.00000i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(573\) 0 0
\(574\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(575\) 0 0
\(576\) 0 0
\(577\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(578\) 0 0
\(579\) 0 0
\(580\) −0.500000 0.866025i −0.500000 0.866025i
\(581\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(582\) 0 0
\(583\) 1.00000i 1.00000i
\(584\) −0.866025 0.500000i −0.866025 0.500000i
\(585\) 0 0
\(586\) −0.500000 0.866025i −0.500000 0.866025i
\(587\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0.866025 0.500000i 0.866025 0.500000i
\(593\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(596\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(597\) 0 0
\(598\) 1.00000i 1.00000i
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(602\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(603\) 0 0
\(604\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(605\) 0 0
\(606\) 0 0
\(607\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(608\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −0.500000 0.866025i −0.500000 0.866025i
\(617\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(618\) 0 0
\(619\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 2.00000 2.00000
\(623\) 0.866025 0.500000i 0.866025 0.500000i
\(624\) 0 0
\(625\) 0.500000 0.866025i 0.500000 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.00000i 1.00000i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) −2.00000 −2.00000
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(638\) −1.00000 −1.00000
\(639\) 0 0
\(640\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(641\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(644\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(645\) 0 0
\(646\) 1.00000i 1.00000i
\(647\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(653\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(654\) 0 0
\(655\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(656\) −0.500000 0.866025i −0.500000 0.866025i
\(657\) 0 0
\(658\) 0 0
\(659\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −0.866025 0.500000i −0.866025 0.500000i
\(665\) −1.00000 −1.00000
\(666\) 0 0
\(667\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(668\) 0.866025 0.500000i 0.866025 0.500000i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(674\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(680\) −0.500000 0.866025i −0.500000 0.866025i
\(681\) 0 0
\(682\) 0 0
\(683\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(684\) 0 0
\(685\) 1.00000i 1.00000i
\(686\) 1.00000 1.00000
\(687\) 0 0
\(688\) 0.500000 0.866025i 0.500000 0.866025i
\(689\) −1.00000 −1.00000
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.00000i 1.00000i
\(696\) 0 0
\(697\) 1.00000 1.00000
\(698\) 0.500000 0.866025i 0.500000 0.866025i
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) −0.866025 0.500000i −0.866025 0.500000i
\(704\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(705\) 0 0
\(706\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(707\) −0.500000 0.866025i −0.500000 0.866025i
\(708\) 0 0
\(709\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(713\) 0 0
\(714\) 0 0
\(715\) −0.500000 0.866025i −0.500000 0.866025i
\(716\) 0.500000 0.866025i 0.500000 0.866025i
\(717\) 0 0
\(718\) −0.500000 0.866025i −0.500000 0.866025i
\(719\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0.500000 0.866025i 0.500000 0.866025i
\(722\) 0 0
\(723\) 0 0
\(724\) 2.00000i 2.00000i
\(725\) 0 0
\(726\) 0 0
\(727\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(728\) 0.866025 0.500000i 0.866025 0.500000i
\(729\) 0 0
\(730\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(731\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(732\) 0 0
\(733\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(734\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(735\) 0 0
\(736\) 0.500000 0.866025i 0.500000 0.866025i
\(737\) 0 0
\(738\) 0 0
\(739\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(740\) −1.00000 −1.00000
\(741\) 0 0
\(742\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(743\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(744\) 0 0
\(745\) −0.500000 0.866025i −0.500000 0.866025i
\(746\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(747\) 0 0
\(748\) −1.00000 −1.00000
\(749\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(750\) 0 0
\(751\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 1.00000i 1.00000i
\(755\) 1.00000 1.00000
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 1.00000 1.00000
\(761\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(762\) 0 0
\(763\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(764\) 0 0
\(765\) 0 0
\(766\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(767\) 0 0
\(768\) 0 0
\(769\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(770\) 1.00000i 1.00000i
\(771\) 0 0
\(772\) 0 0
\(773\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.866025 0.500000i −0.866025 0.500000i
\(777\) 0 0
\(778\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(779\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(780\) 0 0
\(781\) 0 0
\(782\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(783\) 0 0
\(784\) −1.00000 −1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(791\) 0.866025 0.500000i 0.866025 0.500000i
\(792\) 0 0
\(793\) 0 0
\(794\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(795\) 0 0
\(796\) −0.866025 0.500000i −0.866025 0.500000i
\(797\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) −0.866025 0.500000i −0.866025 0.500000i
\(803\) 1.00000 1.00000
\(804\) 0 0
\(805\) 0.866025 0.500000i 0.866025 0.500000i
\(806\) 0 0
\(807\) 0 0
\(808\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(809\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(810\) 0 0
\(811\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(812\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(813\) 0 0
\(814\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(815\) 1.00000i 1.00000i
\(816\) 0 0
\(817\) −1.00000 −1.00000
\(818\) 0 0
\(819\) 0 0
\(820\) 1.00000i 1.00000i
\(821\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(830\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(831\) 0 0
\(832\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(833\) 0.500000 0.866025i 0.500000 0.866025i
\(834\) 0 0
\(835\) −1.00000 −1.00000
\(836\) 0.500000 0.866025i 0.500000 0.866025i
\(837\) 0 0
\(838\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(839\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 0.500000 0.866025i 0.500000 0.866025i
\(843\) 0 0
\(844\) −0.500000 0.866025i −0.500000 0.866025i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −0.866025 0.500000i −0.866025 0.500000i
\(849\) 0 0
\(850\) 0 0
\(851\) 1.00000 1.00000
\(852\) 0 0
\(853\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.866025 0.500000i 0.866025 0.500000i
\(857\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(860\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(861\) 0 0
\(862\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(863\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.73205 1.00000i 1.73205 1.00000i
\(870\) 0 0
\(871\) 0 0
\(872\) 0.500000 0.866025i 0.500000 0.866025i
\(873\) 0 0
\(874\) −1.00000 −1.00000
\(875\) −1.00000 −1.00000
\(876\) 0 0
\(877\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(878\) −2.00000 −2.00000
\(879\) 0 0
\(880\) 1.00000i 1.00000i
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 1.00000i 1.00000i
\(885\) 0 0
\(886\) 0 0
\(887\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 1.00000 1.00000
\(891\) 0 0
\(892\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(893\) 0 0
\(894\) 0 0
\(895\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(896\) 1.00000 1.00000
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0.866025 0.500000i 0.866025 0.500000i
\(902\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(903\) 0 0
\(904\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(905\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(906\) 0 0
\(907\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(908\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(909\) 0 0
\(910\) −1.00000 −1.00000
\(911\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 1.00000 1.00000
\(914\) 2.00000i 2.00000i
\(915\) 0 0
\(916\) −0.866025 0.500000i −0.866025 0.500000i
\(917\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(918\) 0 0
\(919\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(920\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(921\) 0 0
\(922\) 0.500000 0.866025i 0.500000 0.866025i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(927\) 0 0
\(928\) 0.500000 0.866025i 0.500000 0.866025i
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(932\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(933\) 0 0
\(934\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(935\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 1.00000i 1.00000i
\(944\) 0 0
\(945\) 0 0
\(946\) 1.00000i 1.00000i
\(947\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(948\) 0 0
\(949\) 1.00000i 1.00000i
\(950\) 0 0
\(951\) 0 0
\(952\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0.866025 0.500000i 0.866025 0.500000i
\(957\) 0 0
\(958\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(959\) 0.866025 0.500000i 0.866025 0.500000i
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) −0.866025 0.500000i −0.866025 0.500000i
\(963\) 0 0
\(964\) −0.500000 0.866025i −0.500000 0.866025i
\(965\) 0 0
\(966\) 0 0
\(967\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(971\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(972\) 0 0
\(973\) 0.866025 0.500000i 0.866025 0.500000i
\(974\) 0.500000 0.866025i 0.500000 0.866025i
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0.500000 0.866025i 0.500000 0.866025i
\(980\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(981\) 0 0
\(982\) 0.866025 0.500000i 0.866025 0.500000i
\(983\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(987\) 0 0
\(988\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(989\) 0.866025 0.500000i 0.866025 0.500000i
\(990\) 0 0
\(991\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(996\) 0 0
\(997\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(998\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.1.ce.a.235.1 4
3.2 odd 2 504.1.ce.a.403.2 yes 4
7.2 even 3 1512.1.ba.a.667.1 4
8.3 odd 2 inner 1512.1.ce.a.235.2 4
9.4 even 3 1512.1.ba.a.739.2 4
9.5 odd 6 504.1.ba.a.67.1 4
12.11 even 2 2016.1.cm.a.655.1 4
21.2 odd 6 504.1.ba.a.331.2 yes 4
21.5 even 6 3528.1.ba.d.1843.2 4
21.11 odd 6 3528.1.cg.d.2059.1 4
21.17 even 6 3528.1.cg.c.2059.1 4
21.20 even 2 3528.1.ce.c.2419.2 4
24.5 odd 2 2016.1.cm.a.655.2 4
24.11 even 2 504.1.ce.a.403.1 yes 4
36.23 even 6 2016.1.bi.a.1327.2 4
56.51 odd 6 1512.1.ba.a.667.2 4
63.5 even 6 3528.1.ce.c.3019.2 4
63.23 odd 6 504.1.ce.a.499.2 yes 4
63.32 odd 6 3528.1.cg.d.3235.2 4
63.41 even 6 3528.1.ba.d.67.1 4
63.58 even 3 inner 1512.1.ce.a.1171.1 4
63.59 even 6 3528.1.cg.c.3235.2 4
72.5 odd 6 2016.1.bi.a.1327.1 4
72.59 even 6 504.1.ba.a.67.2 yes 4
72.67 odd 6 1512.1.ba.a.739.1 4
84.23 even 6 2016.1.bi.a.79.2 4
168.11 even 6 3528.1.cg.d.2059.2 4
168.59 odd 6 3528.1.cg.c.2059.2 4
168.83 odd 2 3528.1.ce.c.2419.1 4
168.107 even 6 504.1.ba.a.331.1 yes 4
168.131 odd 6 3528.1.ba.d.1843.1 4
168.149 odd 6 2016.1.bi.a.79.1 4
252.23 even 6 2016.1.cm.a.751.2 4
504.59 odd 6 3528.1.cg.c.3235.1 4
504.131 odd 6 3528.1.ce.c.3019.1 4
504.149 odd 6 2016.1.cm.a.751.1 4
504.275 even 6 504.1.ce.a.499.1 yes 4
504.347 even 6 3528.1.cg.d.3235.1 4
504.419 odd 6 3528.1.ba.d.67.2 4
504.499 odd 6 inner 1512.1.ce.a.1171.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.1.ba.a.67.1 4 9.5 odd 6
504.1.ba.a.67.2 yes 4 72.59 even 6
504.1.ba.a.331.1 yes 4 168.107 even 6
504.1.ba.a.331.2 yes 4 21.2 odd 6
504.1.ce.a.403.1 yes 4 24.11 even 2
504.1.ce.a.403.2 yes 4 3.2 odd 2
504.1.ce.a.499.1 yes 4 504.275 even 6
504.1.ce.a.499.2 yes 4 63.23 odd 6
1512.1.ba.a.667.1 4 7.2 even 3
1512.1.ba.a.667.2 4 56.51 odd 6
1512.1.ba.a.739.1 4 72.67 odd 6
1512.1.ba.a.739.2 4 9.4 even 3
1512.1.ce.a.235.1 4 1.1 even 1 trivial
1512.1.ce.a.235.2 4 8.3 odd 2 inner
1512.1.ce.a.1171.1 4 63.58 even 3 inner
1512.1.ce.a.1171.2 4 504.499 odd 6 inner
2016.1.bi.a.79.1 4 168.149 odd 6
2016.1.bi.a.79.2 4 84.23 even 6
2016.1.bi.a.1327.1 4 72.5 odd 6
2016.1.bi.a.1327.2 4 36.23 even 6
2016.1.cm.a.655.1 4 12.11 even 2
2016.1.cm.a.655.2 4 24.5 odd 2
2016.1.cm.a.751.1 4 504.149 odd 6
2016.1.cm.a.751.2 4 252.23 even 6
3528.1.ba.d.67.1 4 63.41 even 6
3528.1.ba.d.67.2 4 504.419 odd 6
3528.1.ba.d.1843.1 4 168.131 odd 6
3528.1.ba.d.1843.2 4 21.5 even 6
3528.1.ce.c.2419.1 4 168.83 odd 2
3528.1.ce.c.2419.2 4 21.20 even 2
3528.1.ce.c.3019.1 4 504.131 odd 6
3528.1.ce.c.3019.2 4 63.5 even 6
3528.1.cg.c.2059.1 4 21.17 even 6
3528.1.cg.c.2059.2 4 168.59 odd 6
3528.1.cg.c.3235.1 4 504.59 odd 6
3528.1.cg.c.3235.2 4 63.59 even 6
3528.1.cg.d.2059.1 4 21.11 odd 6
3528.1.cg.d.2059.2 4 168.11 even 6
3528.1.cg.d.3235.1 4 504.347 even 6
3528.1.cg.d.3235.2 4 63.32 odd 6