Properties

Label 1512.1.ce.a.235.1
Level 15121512
Weight 11
Character 1512.235
Analytic conductor 0.7550.755
Analytic rank 00
Dimension 44
Projective image A4A_{4}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1512,1,Mod(235,1512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1512, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1512.235");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1512=23337 1512 = 2^{3} \cdot 3^{3} \cdot 7
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1512.ce (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.7545862991010.754586299101
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 504)
Projective image: A4A_{4}
Projective field: Galois closure of 4.0.254016.3

Embedding invariants

Embedding label 235.1
Root 0.8660250.500000i-0.866025 - 0.500000i of defining polynomial
Character χ\chi == 1512.235
Dual form 1512.1.ce.a.1171.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000iq21.00000q4+(0.866025+0.500000i)q51.00000iq7+1.00000iq8+(0.5000000.866025i)q10+(0.5000000.866025i)q11+(0.8660250.500000i)q131.00000q14+1.00000q16+(0.500000+0.866025i)q17+(0.5000000.866025i)q19+(0.8660250.500000i)q20+(0.866025+0.500000i)q22+(0.866025+0.500000i)q23+(0.5000000.866025i)q26+1.00000iq28+(0.866025+0.500000i)q291.00000iq32+(0.866025+0.500000i)q34+(0.5000000.866025i)q35+(0.8660250.500000i)q37+(0.866025+0.500000i)q38+(0.500000+0.866025i)q40+(0.5000000.866025i)q41+(0.5000000.866025i)q43+(0.500000+0.866025i)q44+(0.5000000.866025i)q461.00000q49+(0.866025+0.500000i)q52+(0.8660250.500000i)q531.00000iq55+1.00000q56+(0.5000000.866025i)q581.00000q64+1.00000q65+(0.5000000.866025i)q68+(0.8660250.500000i)q70+(0.500000+0.866025i)q73+(0.5000000.866025i)q74+(0.500000+0.866025i)q76+(0.866025+0.500000i)q77+2.00000iq79+(0.866025+0.500000i)q80+(0.866025+0.500000i)q82+(0.500000+0.866025i)q83+(0.866025+0.500000i)q85+(0.8660250.500000i)q86+(0.8660250.500000i)q88+(0.500000+0.866025i)q89+(0.5000000.866025i)q91+(0.8660250.500000i)q921.00000iq95+(0.500000+0.866025i)q97+1.00000iq98+O(q100)q-1.00000i q^{2} -1.00000 q^{4} +(0.866025 + 0.500000i) q^{5} -1.00000i q^{7} +1.00000i q^{8} +(0.500000 - 0.866025i) q^{10} +(-0.500000 - 0.866025i) q^{11} +(0.866025 - 0.500000i) q^{13} -1.00000 q^{14} +1.00000 q^{16} +(-0.500000 + 0.866025i) q^{17} +(-0.500000 - 0.866025i) q^{19} +(-0.866025 - 0.500000i) q^{20} +(-0.866025 + 0.500000i) q^{22} +(0.866025 + 0.500000i) q^{23} +(-0.500000 - 0.866025i) q^{26} +1.00000i q^{28} +(0.866025 + 0.500000i) q^{29} -1.00000i q^{32} +(0.866025 + 0.500000i) q^{34} +(0.500000 - 0.866025i) q^{35} +(0.866025 - 0.500000i) q^{37} +(-0.866025 + 0.500000i) q^{38} +(-0.500000 + 0.866025i) q^{40} +(-0.500000 - 0.866025i) q^{41} +(0.500000 - 0.866025i) q^{43} +(0.500000 + 0.866025i) q^{44} +(0.500000 - 0.866025i) q^{46} -1.00000 q^{49} +(-0.866025 + 0.500000i) q^{52} +(-0.866025 - 0.500000i) q^{53} -1.00000i q^{55} +1.00000 q^{56} +(0.500000 - 0.866025i) q^{58} -1.00000 q^{64} +1.00000 q^{65} +(0.500000 - 0.866025i) q^{68} +(-0.866025 - 0.500000i) q^{70} +(-0.500000 + 0.866025i) q^{73} +(-0.500000 - 0.866025i) q^{74} +(0.500000 + 0.866025i) q^{76} +(-0.866025 + 0.500000i) q^{77} +2.00000i q^{79} +(0.866025 + 0.500000i) q^{80} +(-0.866025 + 0.500000i) q^{82} +(-0.500000 + 0.866025i) q^{83} +(-0.866025 + 0.500000i) q^{85} +(-0.866025 - 0.500000i) q^{86} +(0.866025 - 0.500000i) q^{88} +(0.500000 + 0.866025i) q^{89} +(-0.500000 - 0.866025i) q^{91} +(-0.866025 - 0.500000i) q^{92} -1.00000i q^{95} +(-0.500000 + 0.866025i) q^{97} +1.00000i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q4+2q102q114q14+4q162q172q192q26+2q352q402q41+2q43+2q44+2q464q49+4q56+2q584q64+4q65+2q97+O(q100) 4 q - 4 q^{4} + 2 q^{10} - 2 q^{11} - 4 q^{14} + 4 q^{16} - 2 q^{17} - 2 q^{19} - 2 q^{26} + 2 q^{35} - 2 q^{40} - 2 q^{41} + 2 q^{43} + 2 q^{44} + 2 q^{46} - 4 q^{49} + 4 q^{56} + 2 q^{58} - 4 q^{64} + 4 q^{65}+ \cdots - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1512Z)×\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times.

nn 757757 785785 10811081 11351135
χ(n)\chi(n) 1-1 e(23)e\left(\frac{2}{3}\right) e(23)e\left(\frac{2}{3}\right) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000i 1.00000i
33 0 0
44 −1.00000 −1.00000
55 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
66 0 0
77 1.00000i 1.00000i
88 1.00000i 1.00000i
99 0 0
1010 0.500000 0.866025i 0.500000 0.866025i
1111 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
1212 0 0
1313 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
1414 −1.00000 −1.00000
1515 0 0
1616 1.00000 1.00000
1717 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
1818 0 0
1919 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
2020 −0.866025 0.500000i −0.866025 0.500000i
2121 0 0
2222 −0.866025 + 0.500000i −0.866025 + 0.500000i
2323 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 0 0
2626 −0.500000 0.866025i −0.500000 0.866025i
2727 0 0
2828 1.00000i 1.00000i
2929 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 1.00000i 1.00000i
3333 0 0
3434 0.866025 + 0.500000i 0.866025 + 0.500000i
3535 0.500000 0.866025i 0.500000 0.866025i
3636 0 0
3737 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
3838 −0.866025 + 0.500000i −0.866025 + 0.500000i
3939 0 0
4040 −0.500000 + 0.866025i −0.500000 + 0.866025i
4141 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
4242 0 0
4343 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
4444 0.500000 + 0.866025i 0.500000 + 0.866025i
4545 0 0
4646 0.500000 0.866025i 0.500000 0.866025i
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 −1.00000 −1.00000
5050 0 0
5151 0 0
5252 −0.866025 + 0.500000i −0.866025 + 0.500000i
5353 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
5454 0 0
5555 1.00000i 1.00000i
5656 1.00000 1.00000
5757 0 0
5858 0.500000 0.866025i 0.500000 0.866025i
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 0 0
6464 −1.00000 −1.00000
6565 1.00000 1.00000
6666 0 0
6767 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6868 0.500000 0.866025i 0.500000 0.866025i
6969 0 0
7070 −0.866025 0.500000i −0.866025 0.500000i
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0 0
7373 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
7474 −0.500000 0.866025i −0.500000 0.866025i
7575 0 0
7676 0.500000 + 0.866025i 0.500000 + 0.866025i
7777 −0.866025 + 0.500000i −0.866025 + 0.500000i
7878 0 0
7979 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
8080 0.866025 + 0.500000i 0.866025 + 0.500000i
8181 0 0
8282 −0.866025 + 0.500000i −0.866025 + 0.500000i
8383 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
8484 0 0
8585 −0.866025 + 0.500000i −0.866025 + 0.500000i
8686 −0.866025 0.500000i −0.866025 0.500000i
8787 0 0
8888 0.866025 0.500000i 0.866025 0.500000i
8989 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
9090 0 0
9191 −0.500000 0.866025i −0.500000 0.866025i
9292 −0.866025 0.500000i −0.866025 0.500000i
9393 0 0
9494 0 0
9595 1.00000i 1.00000i
9696 0 0
9797 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
9898 1.00000i 1.00000i
9999 0 0
100100 0 0
101101 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
102102 0 0
103103 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
104104 0.500000 + 0.866025i 0.500000 + 0.866025i
105105 0 0
106106 −0.500000 + 0.866025i −0.500000 + 0.866025i
107107 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
108108 0 0
109109 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
110110 −1.00000 −1.00000
111111 0 0
112112 1.00000i 1.00000i
113113 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
114114 0 0
115115 0.500000 + 0.866025i 0.500000 + 0.866025i
116116 −0.866025 0.500000i −0.866025 0.500000i
117117 0 0
118118 0 0
119119 0.866025 + 0.500000i 0.866025 + 0.500000i
120120 0 0
121121 0 0
122122 0 0
123123 0 0
124124 0 0
125125 1.00000i 1.00000i
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 1.00000i 1.00000i
129129 0 0
130130 1.00000i 1.00000i
131131 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
132132 0 0
133133 −0.866025 + 0.500000i −0.866025 + 0.500000i
134134 0 0
135135 0 0
136136 −0.866025 0.500000i −0.866025 0.500000i
137137 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
138138 0 0
139139 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
140140 −0.500000 + 0.866025i −0.500000 + 0.866025i
141141 0 0
142142 0 0
143143 −0.866025 0.500000i −0.866025 0.500000i
144144 0 0
145145 0.500000 + 0.866025i 0.500000 + 0.866025i
146146 0.866025 + 0.500000i 0.866025 + 0.500000i
147147 0 0
148148 −0.866025 + 0.500000i −0.866025 + 0.500000i
149149 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
150150 0 0
151151 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
152152 0.866025 0.500000i 0.866025 0.500000i
153153 0 0
154154 0.500000 + 0.866025i 0.500000 + 0.866025i
155155 0 0
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 2.00000 2.00000
159159 0 0
160160 0.500000 0.866025i 0.500000 0.866025i
161161 0.500000 0.866025i 0.500000 0.866025i
162162 0 0
163163 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
164164 0.500000 + 0.866025i 0.500000 + 0.866025i
165165 0 0
166166 0.866025 + 0.500000i 0.866025 + 0.500000i
167167 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 0 0
170170 0.500000 + 0.866025i 0.500000 + 0.866025i
171171 0 0
172172 −0.500000 + 0.866025i −0.500000 + 0.866025i
173173 0 0 1.00000 00
−1.00000 π\pi
174174 0 0
175175 0 0
176176 −0.500000 0.866025i −0.500000 0.866025i
177177 0 0
178178 0.866025 0.500000i 0.866025 0.500000i
179179 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
180180 0 0
181181 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
182182 −0.866025 + 0.500000i −0.866025 + 0.500000i
183183 0 0
184184 −0.500000 + 0.866025i −0.500000 + 0.866025i
185185 1.00000 1.00000
186186 0 0
187187 1.00000 1.00000
188188 0 0
189189 0 0
190190 −1.00000 −1.00000
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
194194 0.866025 + 0.500000i 0.866025 + 0.500000i
195195 0 0
196196 1.00000 1.00000
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 −0.500000 0.866025i −0.500000 0.866025i
203203 0.500000 0.866025i 0.500000 0.866025i
204204 0 0
205205 1.00000i 1.00000i
206206 0.500000 0.866025i 0.500000 0.866025i
207207 0 0
208208 0.866025 0.500000i 0.866025 0.500000i
209209 −0.500000 + 0.866025i −0.500000 + 0.866025i
210210 0 0
211211 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
212212 0.866025 + 0.500000i 0.866025 + 0.500000i
213213 0 0
214214 −0.866025 + 0.500000i −0.866025 + 0.500000i
215215 0.866025 0.500000i 0.866025 0.500000i
216216 0 0
217217 0 0
218218 −0.500000 + 0.866025i −0.500000 + 0.866025i
219219 0 0
220220 1.00000i 1.00000i
221221 1.00000i 1.00000i
222222 0 0
223223 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
224224 −1.00000 −1.00000
225225 0 0
226226 0.866025 0.500000i 0.866025 0.500000i
227227 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
228228 0 0
229229 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
230230 0.866025 0.500000i 0.866025 0.500000i
231231 0 0
232232 −0.500000 + 0.866025i −0.500000 + 0.866025i
233233 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0.500000 0.866025i 0.500000 0.866025i
239239 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
242242 0 0
243243 0 0
244244 0 0
245245 −0.866025 0.500000i −0.866025 0.500000i
246246 0 0
247247 −0.866025 0.500000i −0.866025 0.500000i
248248 0 0
249249 0 0
250250 −1.00000 −1.00000
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 1.00000i 1.00000i
254254 0 0
255255 0 0
256256 1.00000 1.00000
257257 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
258258 0 0
259259 −0.500000 0.866025i −0.500000 0.866025i
260260 −1.00000 −1.00000
261261 0 0
262262 0.866025 + 0.500000i 0.866025 + 0.500000i
263263 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
264264 0 0
265265 −0.500000 0.866025i −0.500000 0.866025i
266266 0.500000 + 0.866025i 0.500000 + 0.866025i
267267 0 0
268268 0 0
269269 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
272272 −0.500000 + 0.866025i −0.500000 + 0.866025i
273273 0 0
274274 0.866025 0.500000i 0.866025 0.500000i
275275 0 0
276276 0 0
277277 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
278278 0.866025 0.500000i 0.866025 0.500000i
279279 0 0
280280 0.866025 + 0.500000i 0.866025 + 0.500000i
281281 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
282282 0 0
283283 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
284284 0 0
285285 0 0
286286 −0.500000 + 0.866025i −0.500000 + 0.866025i
287287 −0.866025 + 0.500000i −0.866025 + 0.500000i
288288 0 0
289289 0 0
290290 0.866025 0.500000i 0.866025 0.500000i
291291 0 0
292292 0.500000 0.866025i 0.500000 0.866025i
293293 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
294294 0 0
295295 0 0
296296 0.500000 + 0.866025i 0.500000 + 0.866025i
297297 0 0
298298 −0.500000 + 0.866025i −0.500000 + 0.866025i
299299 1.00000 1.00000
300300 0 0
301301 −0.866025 0.500000i −0.866025 0.500000i
302302 −0.500000 0.866025i −0.500000 0.866025i
303303 0 0
304304 −0.500000 0.866025i −0.500000 0.866025i
305305 0 0
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0.866025 0.500000i 0.866025 0.500000i
309309 0 0
310310 0 0
311311 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
314314 0 0
315315 0 0
316316 2.00000i 2.00000i
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 1.00000i 1.00000i
320320 −0.866025 0.500000i −0.866025 0.500000i
321321 0 0
322322 −0.866025 0.500000i −0.866025 0.500000i
323323 1.00000 1.00000
324324 0 0
325325 0 0
326326 −0.866025 + 0.500000i −0.866025 + 0.500000i
327327 0 0
328328 0.866025 0.500000i 0.866025 0.500000i
329329 0 0
330330 0 0
331331 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
332332 0.500000 0.866025i 0.500000 0.866025i
333333 0 0
334334 0.500000 + 0.866025i 0.500000 + 0.866025i
335335 0 0
336336 0 0
337337 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
338338 0 0
339339 0 0
340340 0.866025 0.500000i 0.866025 0.500000i
341341 0 0
342342 0 0
343343 1.00000i 1.00000i
344344 0.866025 + 0.500000i 0.866025 + 0.500000i
345345 0 0
346346 0 0
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 0 0
352352 −0.866025 + 0.500000i −0.866025 + 0.500000i
353353 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
354354 0 0
355355 0 0
356356 −0.500000 0.866025i −0.500000 0.866025i
357357 0 0
358358 0.866025 + 0.500000i 0.866025 + 0.500000i
359359 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
360360 0 0
361361 0 0
362362 2.00000 2.00000
363363 0 0
364364 0.500000 + 0.866025i 0.500000 + 0.866025i
365365 −0.866025 + 0.500000i −0.866025 + 0.500000i
366366 0 0
367367 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
368368 0.866025 + 0.500000i 0.866025 + 0.500000i
369369 0 0
370370 1.00000i 1.00000i
371371 −0.500000 + 0.866025i −0.500000 + 0.866025i
372372 0 0
373373 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
374374 1.00000i 1.00000i
375375 0 0
376376 0 0
377377 1.00000 1.00000
378378 0 0
379379 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
380380 1.00000i 1.00000i
381381 0 0
382382 0 0
383383 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
384384 0 0
385385 −1.00000 −1.00000
386386 0 0
387387 0 0
388388 0.500000 0.866025i 0.500000 0.866025i
389389 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
390390 0 0
391391 −0.866025 + 0.500000i −0.866025 + 0.500000i
392392 1.00000i 1.00000i
393393 0 0
394394 0 0
395395 −1.00000 + 1.73205i −1.00000 + 1.73205i
396396 0 0
397397 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
398398 0.500000 0.866025i 0.500000 0.866025i
399399 0 0
400400 0 0
401401 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
402402 0 0
403403 0 0
404404 −0.866025 + 0.500000i −0.866025 + 0.500000i
405405 0 0
406406 −0.866025 0.500000i −0.866025 0.500000i
407407 −0.866025 0.500000i −0.866025 0.500000i
408408 0 0
409409 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
410410 −1.00000 −1.00000
411411 0 0
412412 −0.866025 0.500000i −0.866025 0.500000i
413413 0 0
414414 0 0
415415 −0.866025 + 0.500000i −0.866025 + 0.500000i
416416 −0.500000 0.866025i −0.500000 0.866025i
417417 0 0
418418 0.866025 + 0.500000i 0.866025 + 0.500000i
419419 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
420420 0 0
421421 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
422422 0.866025 0.500000i 0.866025 0.500000i
423423 0 0
424424 0.500000 0.866025i 0.500000 0.866025i
425425 0 0
426426 0 0
427427 0 0
428428 0.500000 + 0.866025i 0.500000 + 0.866025i
429429 0 0
430430 −0.500000 0.866025i −0.500000 0.866025i
431431 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
432432 0 0
433433 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
434434 0 0
435435 0 0
436436 0.866025 + 0.500000i 0.866025 + 0.500000i
437437 1.00000i 1.00000i
438438 0 0
439439 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
440440 1.00000 1.00000
441441 0 0
442442 1.00000 1.00000
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 1.00000i 1.00000i
446446 −0.500000 + 0.866025i −0.500000 + 0.866025i
447447 0 0
448448 1.00000i 1.00000i
449449 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
450450 0 0
451451 −0.500000 + 0.866025i −0.500000 + 0.866025i
452452 −0.500000 0.866025i −0.500000 0.866025i
453453 0 0
454454 −0.866025 + 0.500000i −0.866025 + 0.500000i
455455 1.00000i 1.00000i
456456 0 0
457457 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
458458 0.500000 0.866025i 0.500000 0.866025i
459459 0 0
460460 −0.500000 0.866025i −0.500000 0.866025i
461461 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
464464 0.866025 + 0.500000i 0.866025 + 0.500000i
465465 0 0
466466 −0.866025 + 0.500000i −0.866025 + 0.500000i
467467 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 −1.00000 −1.00000
474474 0 0
475475 0 0
476476 −0.866025 0.500000i −0.866025 0.500000i
477477 0 0
478478 0.500000 + 0.866025i 0.500000 + 0.866025i
479479 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 0.500000 0.866025i 0.500000 0.866025i
482482 0.866025 0.500000i 0.866025 0.500000i
483483 0 0
484484 0 0
485485 −0.866025 + 0.500000i −0.866025 + 0.500000i
486486 0 0
487487 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
488488 0 0
489489 0 0
490490 −0.500000 + 0.866025i −0.500000 + 0.866025i
491491 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
492492 0 0
493493 −0.866025 + 0.500000i −0.866025 + 0.500000i
494494 −0.500000 + 0.866025i −0.500000 + 0.866025i
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
500500 1.00000i 1.00000i
501501 0 0
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 1.00000 1.00000
506506 −1.00000 −1.00000
507507 0 0
508508 0 0
509509 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
510510 0 0
511511 0.866025 + 0.500000i 0.866025 + 0.500000i
512512 1.00000i 1.00000i
513513 0 0
514514 0.866025 + 0.500000i 0.866025 + 0.500000i
515515 0.500000 + 0.866025i 0.500000 + 0.866025i
516516 0 0
517517 0 0
518518 −0.866025 + 0.500000i −0.866025 + 0.500000i
519519 0 0
520520 1.00000i 1.00000i
521521 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
522522 0 0
523523 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
524524 0.500000 0.866025i 0.500000 0.866025i
525525 0 0
526526 −0.500000 0.866025i −0.500000 0.866025i
527527 0 0
528528 0 0
529529 0 0
530530 −0.866025 + 0.500000i −0.866025 + 0.500000i
531531 0 0
532532 0.866025 0.500000i 0.866025 0.500000i
533533 −0.866025 0.500000i −0.866025 0.500000i
534534 0 0
535535 1.00000i 1.00000i
536536 0 0
537537 0 0
538538 0.500000 0.866025i 0.500000 0.866025i
539539 0.500000 + 0.866025i 0.500000 + 0.866025i
540540 0 0
541541 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
542542 0.500000 + 0.866025i 0.500000 + 0.866025i
543543 0 0
544544 0.866025 + 0.500000i 0.866025 + 0.500000i
545545 −0.500000 0.866025i −0.500000 0.866025i
546546 0 0
547547 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
548548 −0.500000 0.866025i −0.500000 0.866025i
549549 0 0
550550 0 0
551551 1.00000i 1.00000i
552552 0 0
553553 2.00000 2.00000
554554 −0.500000 0.866025i −0.500000 0.866025i
555555 0 0
556556 −0.500000 0.866025i −0.500000 0.866025i
557557 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
558558 0 0
559559 1.00000i 1.00000i
560560 0.500000 0.866025i 0.500000 0.866025i
561561 0 0
562562 −0.866025 0.500000i −0.866025 0.500000i
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 1.00000i 1.00000i
566566 0 0
567567 0 0
568568 0 0
569569 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0.866025 + 0.500000i 0.866025 + 0.500000i
573573 0 0
574574 0.500000 + 0.866025i 0.500000 + 0.866025i
575575 0 0
576576 0 0
577577 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
578578 0 0
579579 0 0
580580 −0.500000 0.866025i −0.500000 0.866025i
581581 0.866025 + 0.500000i 0.866025 + 0.500000i
582582 0 0
583583 1.00000i 1.00000i
584584 −0.866025 0.500000i −0.866025 0.500000i
585585 0 0
586586 −0.500000 0.866025i −0.500000 0.866025i
587587 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0.866025 0.500000i 0.866025 0.500000i
593593 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
594594 0 0
595595 0.500000 + 0.866025i 0.500000 + 0.866025i
596596 0.866025 + 0.500000i 0.866025 + 0.500000i
597597 0 0
598598 1.00000i 1.00000i
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
602602 −0.500000 + 0.866025i −0.500000 + 0.866025i
603603 0 0
604604 −0.866025 + 0.500000i −0.866025 + 0.500000i
605605 0 0
606606 0 0
607607 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
608608 −0.866025 + 0.500000i −0.866025 + 0.500000i
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
614614 0 0
615615 0 0
616616 −0.500000 0.866025i −0.500000 0.866025i
617617 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
618618 0 0
619619 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
620620 0 0
621621 0 0
622622 2.00000 2.00000
623623 0.866025 0.500000i 0.866025 0.500000i
624624 0 0
625625 0.500000 0.866025i 0.500000 0.866025i
626626 0 0
627627 0 0
628628 0 0
629629 1.00000i 1.00000i
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 −2.00000 −2.00000
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 −0.866025 + 0.500000i −0.866025 + 0.500000i
638638 −1.00000 −1.00000
639639 0 0
640640 −0.500000 + 0.866025i −0.500000 + 0.866025i
641641 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
642642 0 0
643643 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
644644 −0.500000 + 0.866025i −0.500000 + 0.866025i
645645 0 0
646646 1.00000i 1.00000i
647647 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0.500000 + 0.866025i 0.500000 + 0.866025i
653653 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
654654 0 0
655655 −0.866025 + 0.500000i −0.866025 + 0.500000i
656656 −0.500000 0.866025i −0.500000 0.866025i
657657 0 0
658658 0 0
659659 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 0 0
663663 0 0
664664 −0.866025 0.500000i −0.866025 0.500000i
665665 −1.00000 −1.00000
666666 0 0
667667 0.500000 + 0.866025i 0.500000 + 0.866025i
668668 0.866025 0.500000i 0.866025 0.500000i
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
674674 −0.866025 + 0.500000i −0.866025 + 0.500000i
675675 0 0
676676 0 0
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0.866025 + 0.500000i 0.866025 + 0.500000i
680680 −0.500000 0.866025i −0.500000 0.866025i
681681 0 0
682682 0 0
683683 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
684684 0 0
685685 1.00000i 1.00000i
686686 1.00000 1.00000
687687 0 0
688688 0.500000 0.866025i 0.500000 0.866025i
689689 −1.00000 −1.00000
690690 0 0
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 0 0
694694 0 0
695695 1.00000i 1.00000i
696696 0 0
697697 1.00000 1.00000
698698 0.500000 0.866025i 0.500000 0.866025i
699699 0 0
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 −0.866025 0.500000i −0.866025 0.500000i
704704 0.500000 + 0.866025i 0.500000 + 0.866025i
705705 0 0
706706 −0.866025 + 0.500000i −0.866025 + 0.500000i
707707 −0.500000 0.866025i −0.500000 0.866025i
708708 0 0
709709 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
710710 0 0
711711 0 0
712712 −0.866025 + 0.500000i −0.866025 + 0.500000i
713713 0 0
714714 0 0
715715 −0.500000 0.866025i −0.500000 0.866025i
716716 0.500000 0.866025i 0.500000 0.866025i
717717 0 0
718718 −0.500000 0.866025i −0.500000 0.866025i
719719 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0.500000 0.866025i 0.500000 0.866025i
722722 0 0
723723 0 0
724724 2.00000i 2.00000i
725725 0 0
726726 0 0
727727 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
728728 0.866025 0.500000i 0.866025 0.500000i
729729 0 0
730730 0.500000 + 0.866025i 0.500000 + 0.866025i
731731 0.500000 + 0.866025i 0.500000 + 0.866025i
732732 0 0
733733 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
734734 0.500000 + 0.866025i 0.500000 + 0.866025i
735735 0 0
736736 0.500000 0.866025i 0.500000 0.866025i
737737 0 0
738738 0 0
739739 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
740740 −1.00000 −1.00000
741741 0 0
742742 0.866025 + 0.500000i 0.866025 + 0.500000i
743743 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
744744 0 0
745745 −0.500000 0.866025i −0.500000 0.866025i
746746 −0.500000 + 0.866025i −0.500000 + 0.866025i
747747 0 0
748748 −1.00000 −1.00000
749749 −0.866025 + 0.500000i −0.866025 + 0.500000i
750750 0 0
751751 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
752752 0 0
753753 0 0
754754 1.00000i 1.00000i
755755 1.00000 1.00000
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 0 0
759759 0 0
760760 1.00000 1.00000
761761 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
762762 0 0
763763 −0.500000 + 0.866025i −0.500000 + 0.866025i
764764 0 0
765765 0 0
766766 −0.500000 + 0.866025i −0.500000 + 0.866025i
767767 0 0
768768 0 0
769769 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
770770 1.00000i 1.00000i
771771 0 0
772772 0 0
773773 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
774774 0 0
775775 0 0
776776 −0.866025 0.500000i −0.866025 0.500000i
777777 0 0
778778 0.500000 + 0.866025i 0.500000 + 0.866025i
779779 −0.500000 + 0.866025i −0.500000 + 0.866025i
780780 0 0
781781 0 0
782782 0.500000 + 0.866025i 0.500000 + 0.866025i
783783 0 0
784784 −1.00000 −1.00000
785785 0 0
786786 0 0
787787 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
788788 0 0
789789 0 0
790790 1.73205 + 1.00000i 1.73205 + 1.00000i
791791 0.866025 0.500000i 0.866025 0.500000i
792792 0 0
793793 0 0
794794 0.500000 + 0.866025i 0.500000 + 0.866025i
795795 0 0
796796 −0.866025 0.500000i −0.866025 0.500000i
797797 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 −0.866025 0.500000i −0.866025 0.500000i
803803 1.00000 1.00000
804804 0 0
805805 0.866025 0.500000i 0.866025 0.500000i
806806 0 0
807807 0 0
808808 0.500000 + 0.866025i 0.500000 + 0.866025i
809809 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
810810 0 0
811811 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
812812 −0.500000 + 0.866025i −0.500000 + 0.866025i
813813 0 0
814814 −0.500000 + 0.866025i −0.500000 + 0.866025i
815815 1.00000i 1.00000i
816816 0 0
817817 −1.00000 −1.00000
818818 0 0
819819 0 0
820820 1.00000i 1.00000i
821821 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 −0.500000 + 0.866025i −0.500000 + 0.866025i
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
830830 0.500000 + 0.866025i 0.500000 + 0.866025i
831831 0 0
832832 −0.866025 + 0.500000i −0.866025 + 0.500000i
833833 0.500000 0.866025i 0.500000 0.866025i
834834 0 0
835835 −1.00000 −1.00000
836836 0.500000 0.866025i 0.500000 0.866025i
837837 0 0
838838 −0.866025 + 0.500000i −0.866025 + 0.500000i
839839 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
840840 0 0
841841 0 0
842842 0.500000 0.866025i 0.500000 0.866025i
843843 0 0
844844 −0.500000 0.866025i −0.500000 0.866025i
845845 0 0
846846 0 0
847847 0 0
848848 −0.866025 0.500000i −0.866025 0.500000i
849849 0 0
850850 0 0
851851 1.00000 1.00000
852852 0 0
853853 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
854854 0 0
855855 0 0
856856 0.866025 0.500000i 0.866025 0.500000i
857857 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
858858 0 0
859859 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
860860 −0.866025 + 0.500000i −0.866025 + 0.500000i
861861 0 0
862862 −0.500000 + 0.866025i −0.500000 + 0.866025i
863863 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 1.73205 1.00000i 1.73205 1.00000i
870870 0 0
871871 0 0
872872 0.500000 0.866025i 0.500000 0.866025i
873873 0 0
874874 −1.00000 −1.00000
875875 −1.00000 −1.00000
876876 0 0
877877 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
878878 −2.00000 −2.00000
879879 0 0
880880 1.00000i 1.00000i
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
884884 1.00000i 1.00000i
885885 0 0
886886 0 0
887887 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 1.00000 1.00000
891891 0 0
892892 0.866025 + 0.500000i 0.866025 + 0.500000i
893893 0 0
894894 0 0
895895 −0.866025 + 0.500000i −0.866025 + 0.500000i
896896 1.00000 1.00000
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0.866025 0.500000i 0.866025 0.500000i
902902 0.866025 + 0.500000i 0.866025 + 0.500000i
903903 0 0
904904 −0.866025 + 0.500000i −0.866025 + 0.500000i
905905 −1.00000 + 1.73205i −1.00000 + 1.73205i
906906 0 0
907907 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
908908 0.500000 + 0.866025i 0.500000 + 0.866025i
909909 0 0
910910 −1.00000 −1.00000
911911 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 1.00000 1.00000
914914 2.00000i 2.00000i
915915 0 0
916916 −0.866025 0.500000i −0.866025 0.500000i
917917 0.866025 + 0.500000i 0.866025 + 0.500000i
918918 0 0
919919 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
920920 −0.866025 + 0.500000i −0.866025 + 0.500000i
921921 0 0
922922 0.500000 0.866025i 0.500000 0.866025i
923923 0 0
924924 0 0
925925 0 0
926926 0.500000 + 0.866025i 0.500000 + 0.866025i
927927 0 0
928928 0.500000 0.866025i 0.500000 0.866025i
929929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
930930 0 0
931931 0.500000 + 0.866025i 0.500000 + 0.866025i
932932 0.500000 + 0.866025i 0.500000 + 0.866025i
933933 0 0
934934 −0.866025 + 0.500000i −0.866025 + 0.500000i
935935 0.866025 + 0.500000i 0.866025 + 0.500000i
936936 0 0
937937 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 1.00000i 1.00000i
944944 0 0
945945 0 0
946946 1.00000i 1.00000i
947947 2.00000 2.00000 1.00000 00
1.00000 00
948948 0 0
949949 1.00000i 1.00000i
950950 0 0
951951 0 0
952952 −0.500000 + 0.866025i −0.500000 + 0.866025i
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 0 0
955955 0 0
956956 0.866025 0.500000i 0.866025 0.500000i
957957 0 0
958958 0.500000 + 0.866025i 0.500000 + 0.866025i
959959 0.866025 0.500000i 0.866025 0.500000i
960960 0 0
961961 1.00000 1.00000
962962 −0.866025 0.500000i −0.866025 0.500000i
963963 0 0
964964 −0.500000 0.866025i −0.500000 0.866025i
965965 0 0
966966 0 0
967967 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
968968 0 0
969969 0 0
970970 0.500000 + 0.866025i 0.500000 + 0.866025i
971971 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
972972 0 0
973973 0.866025 0.500000i 0.866025 0.500000i
974974 0.500000 0.866025i 0.500000 0.866025i
975975 0 0
976976 0 0
977977 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
978978 0 0
979979 0.500000 0.866025i 0.500000 0.866025i
980980 0.866025 + 0.500000i 0.866025 + 0.500000i
981981 0 0
982982 0.866025 0.500000i 0.866025 0.500000i
983983 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
984984 0 0
985985 0 0
986986 0.500000 + 0.866025i 0.500000 + 0.866025i
987987 0 0
988988 0.866025 + 0.500000i 0.866025 + 0.500000i
989989 0.866025 0.500000i 0.866025 0.500000i
990990 0 0
991991 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
992992 0 0
993993 0 0
994994 0 0
995995 0.500000 + 0.866025i 0.500000 + 0.866025i
996996 0 0
997997 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
998998 0.866025 + 0.500000i 0.866025 + 0.500000i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.1.ce.a.235.1 4
3.2 odd 2 504.1.ce.a.403.2 yes 4
7.2 even 3 1512.1.ba.a.667.1 4
8.3 odd 2 inner 1512.1.ce.a.235.2 4
9.4 even 3 1512.1.ba.a.739.2 4
9.5 odd 6 504.1.ba.a.67.1 4
12.11 even 2 2016.1.cm.a.655.1 4
21.2 odd 6 504.1.ba.a.331.2 yes 4
21.5 even 6 3528.1.ba.d.1843.2 4
21.11 odd 6 3528.1.cg.d.2059.1 4
21.17 even 6 3528.1.cg.c.2059.1 4
21.20 even 2 3528.1.ce.c.2419.2 4
24.5 odd 2 2016.1.cm.a.655.2 4
24.11 even 2 504.1.ce.a.403.1 yes 4
36.23 even 6 2016.1.bi.a.1327.2 4
56.51 odd 6 1512.1.ba.a.667.2 4
63.5 even 6 3528.1.ce.c.3019.2 4
63.23 odd 6 504.1.ce.a.499.2 yes 4
63.32 odd 6 3528.1.cg.d.3235.2 4
63.41 even 6 3528.1.ba.d.67.1 4
63.58 even 3 inner 1512.1.ce.a.1171.1 4
63.59 even 6 3528.1.cg.c.3235.2 4
72.5 odd 6 2016.1.bi.a.1327.1 4
72.59 even 6 504.1.ba.a.67.2 yes 4
72.67 odd 6 1512.1.ba.a.739.1 4
84.23 even 6 2016.1.bi.a.79.2 4
168.11 even 6 3528.1.cg.d.2059.2 4
168.59 odd 6 3528.1.cg.c.2059.2 4
168.83 odd 2 3528.1.ce.c.2419.1 4
168.107 even 6 504.1.ba.a.331.1 yes 4
168.131 odd 6 3528.1.ba.d.1843.1 4
168.149 odd 6 2016.1.bi.a.79.1 4
252.23 even 6 2016.1.cm.a.751.2 4
504.59 odd 6 3528.1.cg.c.3235.1 4
504.131 odd 6 3528.1.ce.c.3019.1 4
504.149 odd 6 2016.1.cm.a.751.1 4
504.275 even 6 504.1.ce.a.499.1 yes 4
504.347 even 6 3528.1.cg.d.3235.1 4
504.419 odd 6 3528.1.ba.d.67.2 4
504.499 odd 6 inner 1512.1.ce.a.1171.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.1.ba.a.67.1 4 9.5 odd 6
504.1.ba.a.67.2 yes 4 72.59 even 6
504.1.ba.a.331.1 yes 4 168.107 even 6
504.1.ba.a.331.2 yes 4 21.2 odd 6
504.1.ce.a.403.1 yes 4 24.11 even 2
504.1.ce.a.403.2 yes 4 3.2 odd 2
504.1.ce.a.499.1 yes 4 504.275 even 6
504.1.ce.a.499.2 yes 4 63.23 odd 6
1512.1.ba.a.667.1 4 7.2 even 3
1512.1.ba.a.667.2 4 56.51 odd 6
1512.1.ba.a.739.1 4 72.67 odd 6
1512.1.ba.a.739.2 4 9.4 even 3
1512.1.ce.a.235.1 4 1.1 even 1 trivial
1512.1.ce.a.235.2 4 8.3 odd 2 inner
1512.1.ce.a.1171.1 4 63.58 even 3 inner
1512.1.ce.a.1171.2 4 504.499 odd 6 inner
2016.1.bi.a.79.1 4 168.149 odd 6
2016.1.bi.a.79.2 4 84.23 even 6
2016.1.bi.a.1327.1 4 72.5 odd 6
2016.1.bi.a.1327.2 4 36.23 even 6
2016.1.cm.a.655.1 4 12.11 even 2
2016.1.cm.a.655.2 4 24.5 odd 2
2016.1.cm.a.751.1 4 504.149 odd 6
2016.1.cm.a.751.2 4 252.23 even 6
3528.1.ba.d.67.1 4 63.41 even 6
3528.1.ba.d.67.2 4 504.419 odd 6
3528.1.ba.d.1843.1 4 168.131 odd 6
3528.1.ba.d.1843.2 4 21.5 even 6
3528.1.ce.c.2419.1 4 168.83 odd 2
3528.1.ce.c.2419.2 4 21.20 even 2
3528.1.ce.c.3019.1 4 504.131 odd 6
3528.1.ce.c.3019.2 4 63.5 even 6
3528.1.cg.c.2059.1 4 21.17 even 6
3528.1.cg.c.2059.2 4 168.59 odd 6
3528.1.cg.c.3235.1 4 504.59 odd 6
3528.1.cg.c.3235.2 4 63.59 even 6
3528.1.cg.d.2059.1 4 21.11 odd 6
3528.1.cg.d.2059.2 4 168.11 even 6
3528.1.cg.d.3235.1 4 504.347 even 6
3528.1.cg.d.3235.2 4 63.32 odd 6