L(s) = 1 | + (−1.41 − 2.44i)5-s + (−1 + 1.73i)11-s + 5.65·13-s + (−1.41 + 2.44i)17-s + (−2.82 − 4.89i)19-s + (−3 − 5.19i)23-s + (−1.49 + 2.59i)25-s − 4·29-s + (2.82 − 4.89i)31-s + (1 + 1.73i)37-s − 2.82·41-s − 4·43-s + (5.65 + 9.79i)47-s + (−6 + 10.3i)53-s + 5.65·55-s + ⋯ |
L(s) = 1 | + (−0.632 − 1.09i)5-s + (−0.301 + 0.522i)11-s + 1.56·13-s + (−0.342 + 0.594i)17-s + (−0.648 − 1.12i)19-s + (−0.625 − 1.08i)23-s + (−0.299 + 0.519i)25-s − 0.742·29-s + (0.508 − 0.879i)31-s + (0.164 + 0.284i)37-s − 0.441·41-s − 0.609·43-s + (0.825 + 1.42i)47-s + (−0.824 + 1.42i)53-s + 0.762·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6279828940\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6279828940\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (1.41 + 2.44i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1 - 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 5.65T + 13T^{2} \) |
| 17 | \( 1 + (1.41 - 2.44i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.82 + 4.89i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3 + 5.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 4T + 29T^{2} \) |
| 31 | \( 1 + (-2.82 + 4.89i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1 - 1.73i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 2.82T + 41T^{2} \) |
| 43 | \( 1 + 4T + 43T^{2} \) |
| 47 | \( 1 + (-5.65 - 9.79i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (6 - 10.3i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.65 + 9.79i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.82 + 4.89i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6 + 10.3i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4 + 6.92i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 11.3T + 83T^{2} \) |
| 89 | \( 1 + (4.24 + 7.34i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 11.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.201868430388122185112348904984, −7.78333486263716821958233487865, −6.55950255130791717461790073068, −6.10206686275671847625346843454, −4.95553250835819972330296838879, −4.38064270842646198907727175390, −3.74858046341464022964079554106, −2.47274397015080130763037242510, −1.35756320633370239334647848808, −0.19499898755856863083878066500,
1.44915848150364844547056413159, 2.65699591385508786614902251628, 3.68088204535689104773267375777, 3.85111824381347163125414451099, 5.31958347556492921911805582203, 5.99975163820132977448402643375, 6.75582501516725827036933261681, 7.38746469539236020439903240139, 8.284128055691339425415691529969, 8.630803386858349803889810384604