L(s) = 1 | + (−1.41 − 2.44i)5-s + (−1 + 1.73i)11-s + 5.65·13-s + (−1.41 + 2.44i)17-s + (−2.82 − 4.89i)19-s + (−3 − 5.19i)23-s + (−1.49 + 2.59i)25-s − 4·29-s + (2.82 − 4.89i)31-s + (1 + 1.73i)37-s − 2.82·41-s − 4·43-s + (5.65 + 9.79i)47-s + (−6 + 10.3i)53-s + 5.65·55-s + ⋯ |
L(s) = 1 | + (−0.632 − 1.09i)5-s + (−0.301 + 0.522i)11-s + 1.56·13-s + (−0.342 + 0.594i)17-s + (−0.648 − 1.12i)19-s + (−0.625 − 1.08i)23-s + (−0.299 + 0.519i)25-s − 0.742·29-s + (0.508 − 0.879i)31-s + (0.164 + 0.284i)37-s − 0.441·41-s − 0.609·43-s + (0.825 + 1.42i)47-s + (−0.824 + 1.42i)53-s + 0.762·55-s + ⋯ |
Λ(s)=(=(3528s/2ΓC(s)L(s)(−0.991+0.126i)Λ(2−s)
Λ(s)=(=(3528s/2ΓC(s+1/2)L(s)(−0.991+0.126i)Λ(1−s)
Degree: |
2 |
Conductor: |
3528
= 23⋅32⋅72
|
Sign: |
−0.991+0.126i
|
Analytic conductor: |
28.1712 |
Root analytic conductor: |
5.30765 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3528(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3528, ( :1/2), −0.991+0.126i)
|
Particular Values
L(1) |
≈ |
0.6279828940 |
L(21) |
≈ |
0.6279828940 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+(1.41+2.44i)T+(−2.5+4.33i)T2 |
| 11 | 1+(1−1.73i)T+(−5.5−9.52i)T2 |
| 13 | 1−5.65T+13T2 |
| 17 | 1+(1.41−2.44i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.82+4.89i)T+(−9.5+16.4i)T2 |
| 23 | 1+(3+5.19i)T+(−11.5+19.9i)T2 |
| 29 | 1+4T+29T2 |
| 31 | 1+(−2.82+4.89i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−1−1.73i)T+(−18.5+32.0i)T2 |
| 41 | 1+2.82T+41T2 |
| 43 | 1+4T+43T2 |
| 47 | 1+(−5.65−9.79i)T+(−23.5+40.7i)T2 |
| 53 | 1+(6−10.3i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−5.65+9.79i)T+(−29.5−51.0i)T2 |
| 61 | 1+(2.82+4.89i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−6+10.3i)T+(−33.5−58.0i)T2 |
| 71 | 1+6T+71T2 |
| 73 | 1+(−36.5−63.2i)T2 |
| 79 | 1+(4+6.92i)T+(−39.5+68.4i)T2 |
| 83 | 1−11.3T+83T2 |
| 89 | 1+(4.24+7.34i)T+(−44.5+77.0i)T2 |
| 97 | 1+11.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.201868430388122185112348904984, −7.78333486263716821958233487865, −6.55950255130791717461790073068, −6.10206686275671847625346843454, −4.95553250835819972330296838879, −4.38064270842646198907727175390, −3.74858046341464022964079554106, −2.47274397015080130763037242510, −1.35756320633370239334647848808, −0.19499898755856863083878066500,
1.44915848150364844547056413159, 2.65699591385508786614902251628, 3.68088204535689104773267375777, 3.85111824381347163125414451099, 5.31958347556492921911805582203, 5.99975163820132977448402643375, 6.75582501516725827036933261681, 7.38746469539236020439903240139, 8.284128055691339425415691529969, 8.630803386858349803889810384604