Properties

Label 3528.2.s.bf
Level 35283528
Weight 22
Character orbit 3528.s
Analytic conductor 28.17128.171
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3528,2,Mod(361,3528)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3528, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3528.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3528=233272 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3528.s (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 28.171221833128.1712218331
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(2,3)\Q(\sqrt{2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+2x2+4 x^{4} + 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a25]\Z[a_1, \ldots, a_{25}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q5+2β2q11+2β3q13+(β3β1)q17+2β1q19+(6β26)q23+3β2q254q29+(2β3+2β1)q31+4β3q97+O(q100) q + \beta_1 q^{5} + 2 \beta_{2} q^{11} + 2 \beta_{3} q^{13} + ( - \beta_{3} - \beta_1) q^{17} + 2 \beta_1 q^{19} + ( - 6 \beta_{2} - 6) q^{23} + 3 \beta_{2} q^{25} - 4 q^{29} + (2 \beta_{3} + 2 \beta_1) q^{31}+ \cdots - 4 \beta_{3} q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q1112q236q2516q29+4q3716q4324q5332q65+24q6724q7116q79+32q8532q95+O(q100) 4 q - 4 q^{11} - 12 q^{23} - 6 q^{25} - 16 q^{29} + 4 q^{37} - 16 q^{43} - 24 q^{53} - 32 q^{65} + 24 q^{67} - 24 q^{71} - 16 q^{79} + 32 q^{85} - 32 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+2x2+4 x^{4} + 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== 2ν 2\nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== ν3 \nu^{3} Copy content Toggle raw display
ν\nu== (β1)/2 ( \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== β3 \beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3528Z)×\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times.

nn 785785 10811081 17651765 26472647
χ(n)\chi(n) 11 1β2-1 - \beta_{2} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
361.1
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i
0.707107 1.22474i
0 0 0 −1.41421 2.44949i 0 0 0 0 0
361.2 0 0 0 1.41421 + 2.44949i 0 0 0 0 0
3313.1 0 0 0 −1.41421 + 2.44949i 0 0 0 0 0
3313.2 0 0 0 1.41421 2.44949i 0 0 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3528.2.s.bf 4
3.b odd 2 1 3528.2.s.bi 4
7.b odd 2 1 inner 3528.2.s.bf 4
7.c even 3 1 3528.2.a.bi yes 2
7.c even 3 1 inner 3528.2.s.bf 4
7.d odd 6 1 3528.2.a.bi yes 2
7.d odd 6 1 inner 3528.2.s.bf 4
21.c even 2 1 3528.2.s.bi 4
21.g even 6 1 3528.2.a.bf 2
21.g even 6 1 3528.2.s.bi 4
21.h odd 6 1 3528.2.a.bf 2
21.h odd 6 1 3528.2.s.bi 4
28.f even 6 1 7056.2.a.ck 2
28.g odd 6 1 7056.2.a.ck 2
84.j odd 6 1 7056.2.a.cq 2
84.n even 6 1 7056.2.a.cq 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3528.2.a.bf 2 21.g even 6 1
3528.2.a.bf 2 21.h odd 6 1
3528.2.a.bi yes 2 7.c even 3 1
3528.2.a.bi yes 2 7.d odd 6 1
3528.2.s.bf 4 1.a even 1 1 trivial
3528.2.s.bf 4 7.b odd 2 1 inner
3528.2.s.bf 4 7.c even 3 1 inner
3528.2.s.bf 4 7.d odd 6 1 inner
3528.2.s.bi 4 3.b odd 2 1
3528.2.s.bi 4 21.c even 2 1
3528.2.s.bi 4 21.g even 6 1
3528.2.s.bi 4 21.h odd 6 1
7056.2.a.ck 2 28.f even 6 1
7056.2.a.ck 2 28.g odd 6 1
7056.2.a.cq 2 84.j odd 6 1
7056.2.a.cq 2 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(3528,[χ])S_{2}^{\mathrm{new}}(3528, [\chi]):

T54+8T52+64 T_{5}^{4} + 8T_{5}^{2} + 64 Copy content Toggle raw display
T112+2T11+4 T_{11}^{2} + 2T_{11} + 4 Copy content Toggle raw display
T13232 T_{13}^{2} - 32 Copy content Toggle raw display
T232+6T23+36 T_{23}^{2} + 6T_{23} + 36 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4+8T2+64 T^{4} + 8T^{2} + 64 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
1313 (T232)2 (T^{2} - 32)^{2} Copy content Toggle raw display
1717 T4+8T2+64 T^{4} + 8T^{2} + 64 Copy content Toggle raw display
1919 T4+32T2+1024 T^{4} + 32T^{2} + 1024 Copy content Toggle raw display
2323 (T2+6T+36)2 (T^{2} + 6 T + 36)^{2} Copy content Toggle raw display
2929 (T+4)4 (T + 4)^{4} Copy content Toggle raw display
3131 T4+32T2+1024 T^{4} + 32T^{2} + 1024 Copy content Toggle raw display
3737 (T22T+4)2 (T^{2} - 2 T + 4)^{2} Copy content Toggle raw display
4141 (T28)2 (T^{2} - 8)^{2} Copy content Toggle raw display
4343 (T+4)4 (T + 4)^{4} Copy content Toggle raw display
4747 T4+128T2+16384 T^{4} + 128 T^{2} + 16384 Copy content Toggle raw display
5353 (T2+12T+144)2 (T^{2} + 12 T + 144)^{2} Copy content Toggle raw display
5959 T4+128T2+16384 T^{4} + 128 T^{2} + 16384 Copy content Toggle raw display
6161 T4+32T2+1024 T^{4} + 32T^{2} + 1024 Copy content Toggle raw display
6767 (T212T+144)2 (T^{2} - 12 T + 144)^{2} Copy content Toggle raw display
7171 (T+6)4 (T + 6)^{4} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 (T2+8T+64)2 (T^{2} + 8 T + 64)^{2} Copy content Toggle raw display
8383 (T2128)2 (T^{2} - 128)^{2} Copy content Toggle raw display
8989 T4+72T2+5184 T^{4} + 72T^{2} + 5184 Copy content Toggle raw display
9797 (T2128)2 (T^{2} - 128)^{2} Copy content Toggle raw display
show more
show less