L(s) = 1 | + (0.707 − 1.22i)5-s − 1.41·13-s + (−0.707 − 1.22i)17-s + (−2 + 3.46i)23-s + (1.50 + 2.59i)25-s + 6·29-s + (2.82 + 4.89i)31-s + (2 − 3.46i)37-s + 7.07·41-s + 4·43-s + (5.65 − 9.79i)47-s + (−2 − 3.46i)53-s + (−2.82 − 4.89i)59-s + (2.12 − 3.67i)61-s + (−1.00 + 1.73i)65-s + ⋯ |
L(s) = 1 | + (0.316 − 0.547i)5-s − 0.392·13-s + (−0.171 − 0.297i)17-s + (−0.417 + 0.722i)23-s + (0.300 + 0.519i)25-s + 1.11·29-s + (0.508 + 0.879i)31-s + (0.328 − 0.569i)37-s + 1.10·41-s + 0.609·43-s + (0.825 − 1.42i)47-s + (−0.274 − 0.475i)53-s + (−0.368 − 0.637i)59-s + (0.271 − 0.470i)61-s + (−0.124 + 0.214i)65-s + ⋯ |
Λ(s)=(=(3528s/2ΓC(s)L(s)(0.827+0.561i)Λ(2−s)
Λ(s)=(=(3528s/2ΓC(s+1/2)L(s)(0.827+0.561i)Λ(1−s)
Degree: |
2 |
Conductor: |
3528
= 23⋅32⋅72
|
Sign: |
0.827+0.561i
|
Analytic conductor: |
28.1712 |
Root analytic conductor: |
5.30765 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3528(3313,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3528, ( :1/2), 0.827+0.561i)
|
Particular Values
L(1) |
≈ |
1.920004350 |
L(21) |
≈ |
1.920004350 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+(−0.707+1.22i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−5.5+9.52i)T2 |
| 13 | 1+1.41T+13T2 |
| 17 | 1+(0.707+1.22i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−9.5−16.4i)T2 |
| 23 | 1+(2−3.46i)T+(−11.5−19.9i)T2 |
| 29 | 1−6T+29T2 |
| 31 | 1+(−2.82−4.89i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−2+3.46i)T+(−18.5−32.0i)T2 |
| 41 | 1−7.07T+41T2 |
| 43 | 1−4T+43T2 |
| 47 | 1+(−5.65+9.79i)T+(−23.5−40.7i)T2 |
| 53 | 1+(2+3.46i)T+(−26.5+45.8i)T2 |
| 59 | 1+(2.82+4.89i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−2.12+3.67i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2+3.46i)T+(−33.5+58.0i)T2 |
| 71 | 1−12T+71T2 |
| 73 | 1+(3.53+6.12i)T+(−36.5+63.2i)T2 |
| 79 | 1+(4−6.92i)T+(−39.5−68.4i)T2 |
| 83 | 1−5.65T+83T2 |
| 89 | 1+(−6.36+11.0i)T+(−44.5−77.0i)T2 |
| 97 | 1+4.24T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.564499442854433339548822219990, −7.78213480230713943947099081907, −7.04310919169011911185091049256, −6.24424931291055014610273215391, −5.37502384962556578246960770968, −4.81196676248911064419850926058, −3.88185155922298331459972579758, −2.86861767911408905010837352001, −1.88481234374815161419701063678, −0.73763411856540830197876763652,
0.926092722630014605111445645099, 2.36675833024072717194424064416, 2.83885649181238646434063600287, 4.14168364565290695408132210556, 4.67878866564645690286248081441, 5.88976333395735968151038902236, 6.30211889448959292826186510061, 7.13503379597963443294311077008, 7.908428936445971607070469845461, 8.581461037077837911391877267621