Properties

Label 3528.2.s.bg
Level $3528$
Weight $2$
Character orbit 3528.s
Analytic conductor $28.171$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3528,2,Mod(361,3528)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3528, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3528.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.1712218331\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{5} + \beta_{3} q^{13} + (\beta_{3} + \beta_1) q^{17} + ( - 4 \beta_{2} - 4) q^{23} - 3 \beta_{2} q^{25} + 6 q^{29} + ( - 4 \beta_{3} - 4 \beta_1) q^{31} + (4 \beta_{2} + 4) q^{37} - 5 \beta_{3} q^{41}+ \cdots + 3 \beta_{3} q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{23} + 6 q^{25} + 24 q^{29} + 8 q^{37} + 16 q^{43} - 8 q^{53} - 4 q^{65} - 8 q^{67} + 48 q^{71} - 16 q^{79} - 8 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(1765\) \(2647\)
\(\chi(n)\) \(1\) \(-1 - \beta_{2}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i
0.707107 1.22474i
0 0 0 −0.707107 1.22474i 0 0 0 0 0
361.2 0 0 0 0.707107 + 1.22474i 0 0 0 0 0
3313.1 0 0 0 −0.707107 + 1.22474i 0 0 0 0 0
3313.2 0 0 0 0.707107 1.22474i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3528.2.s.bg 4
3.b odd 2 1 3528.2.s.bh 4
7.b odd 2 1 inner 3528.2.s.bg 4
7.c even 3 1 3528.2.a.bh yes 2
7.c even 3 1 inner 3528.2.s.bg 4
7.d odd 6 1 3528.2.a.bh yes 2
7.d odd 6 1 inner 3528.2.s.bg 4
21.c even 2 1 3528.2.s.bh 4
21.g even 6 1 3528.2.a.bg 2
21.g even 6 1 3528.2.s.bh 4
21.h odd 6 1 3528.2.a.bg 2
21.h odd 6 1 3528.2.s.bh 4
28.f even 6 1 7056.2.a.cn 2
28.g odd 6 1 7056.2.a.cn 2
84.j odd 6 1 7056.2.a.cp 2
84.n even 6 1 7056.2.a.cp 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3528.2.a.bg 2 21.g even 6 1
3528.2.a.bg 2 21.h odd 6 1
3528.2.a.bh yes 2 7.c even 3 1
3528.2.a.bh yes 2 7.d odd 6 1
3528.2.s.bg 4 1.a even 1 1 trivial
3528.2.s.bg 4 7.b odd 2 1 inner
3528.2.s.bg 4 7.c even 3 1 inner
3528.2.s.bg 4 7.d odd 6 1 inner
3528.2.s.bh 4 3.b odd 2 1
3528.2.s.bh 4 21.c even 2 1
3528.2.s.bh 4 21.g even 6 1
3528.2.s.bh 4 21.h odd 6 1
7056.2.a.cn 2 28.f even 6 1
7056.2.a.cn 2 28.g odd 6 1
7056.2.a.cp 2 84.j odd 6 1
7056.2.a.cp 2 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3528, [\chi])\):

\( T_{5}^{4} + 2T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{13}^{2} - 2 \) Copy content Toggle raw display
\( T_{23}^{2} + 4T_{23} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 4 T + 16)^{2} \) Copy content Toggle raw display
$29$ \( (T - 6)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 32T^{2} + 1024 \) Copy content Toggle raw display
$37$ \( (T^{2} - 4 T + 16)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 50)^{2} \) Copy content Toggle raw display
$43$ \( (T - 4)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 128 T^{2} + 16384 \) Copy content Toggle raw display
$53$ \( (T^{2} + 4 T + 16)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 32T^{2} + 1024 \) Copy content Toggle raw display
$61$ \( T^{4} + 18T^{2} + 324 \) Copy content Toggle raw display
$67$ \( (T^{2} + 4 T + 16)^{2} \) Copy content Toggle raw display
$71$ \( (T - 12)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 50T^{2} + 2500 \) Copy content Toggle raw display
$79$ \( (T^{2} + 8 T + 64)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 32)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 162 T^{2} + 26244 \) Copy content Toggle raw display
$97$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
show more
show less