Properties

Label 2-3528-7.2-c1-0-15
Degree 22
Conductor 35283528
Sign 0.6050.795i0.605 - 0.795i
Analytic cond. 28.171228.1712
Root an. cond. 5.307655.30765
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 − 0.866i)5-s + (1.5 + 2.59i)11-s − 4·13-s + (−2 + 3.46i)19-s + (4 − 6.92i)23-s + (2 + 3.46i)25-s + 3·29-s + (−2.5 − 4.33i)31-s + (−4 + 6.92i)37-s + 8·41-s + 6·43-s + (−5 + 8.66i)47-s + (4.5 + 7.79i)53-s + 3·55-s + (2.5 + 4.33i)59-s + ⋯
L(s)  = 1  + (0.223 − 0.387i)5-s + (0.452 + 0.783i)11-s − 1.10·13-s + (−0.458 + 0.794i)19-s + (0.834 − 1.44i)23-s + (0.400 + 0.692i)25-s + 0.557·29-s + (−0.449 − 0.777i)31-s + (−0.657 + 1.13i)37-s + 1.24·41-s + 0.914·43-s + (−0.729 + 1.26i)47-s + (0.618 + 1.07i)53-s + 0.404·55-s + (0.325 + 0.563i)59-s + ⋯

Functional equation

Λ(s)=(3528s/2ΓC(s)L(s)=((0.6050.795i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(3528s/2ΓC(s+1/2)L(s)=((0.6050.795i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 35283528    =    2332722^{3} \cdot 3^{2} \cdot 7^{2}
Sign: 0.6050.795i0.605 - 0.795i
Analytic conductor: 28.171228.1712
Root analytic conductor: 5.307655.30765
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ3528(3313,)\chi_{3528} (3313, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 3528, ( :1/2), 0.6050.795i)(2,\ 3528,\ (\ :1/2),\ 0.605 - 0.795i)

Particular Values

L(1)L(1) \approx 1.6550142601.655014260
L(12)L(\frac12) \approx 1.6550142601.655014260
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
7 1 1
good5 1+(0.5+0.866i)T+(2.54.33i)T2 1 + (-0.5 + 0.866i)T + (-2.5 - 4.33i)T^{2}
11 1+(1.52.59i)T+(5.5+9.52i)T2 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2}
13 1+4T+13T2 1 + 4T + 13T^{2}
17 1+(8.5+14.7i)T2 1 + (-8.5 + 14.7i)T^{2}
19 1+(23.46i)T+(9.516.4i)T2 1 + (2 - 3.46i)T + (-9.5 - 16.4i)T^{2}
23 1+(4+6.92i)T+(11.519.9i)T2 1 + (-4 + 6.92i)T + (-11.5 - 19.9i)T^{2}
29 13T+29T2 1 - 3T + 29T^{2}
31 1+(2.5+4.33i)T+(15.5+26.8i)T2 1 + (2.5 + 4.33i)T + (-15.5 + 26.8i)T^{2}
37 1+(46.92i)T+(18.532.0i)T2 1 + (4 - 6.92i)T + (-18.5 - 32.0i)T^{2}
41 18T+41T2 1 - 8T + 41T^{2}
43 16T+43T2 1 - 6T + 43T^{2}
47 1+(58.66i)T+(23.540.7i)T2 1 + (5 - 8.66i)T + (-23.5 - 40.7i)T^{2}
53 1+(4.57.79i)T+(26.5+45.8i)T2 1 + (-4.5 - 7.79i)T + (-26.5 + 45.8i)T^{2}
59 1+(2.54.33i)T+(29.5+51.0i)T2 1 + (-2.5 - 4.33i)T + (-29.5 + 51.0i)T^{2}
61 1+(58.66i)T+(30.552.8i)T2 1 + (5 - 8.66i)T + (-30.5 - 52.8i)T^{2}
67 1+(3+5.19i)T+(33.5+58.0i)T2 1 + (3 + 5.19i)T + (-33.5 + 58.0i)T^{2}
71 1+10T+71T2 1 + 10T + 71T^{2}
73 1+(11.73i)T+(36.5+63.2i)T2 1 + (-1 - 1.73i)T + (-36.5 + 63.2i)T^{2}
79 1+(5.59.52i)T+(39.568.4i)T2 1 + (5.5 - 9.52i)T + (-39.5 - 68.4i)T^{2}
83 17T+83T2 1 - 7T + 83T^{2}
89 1+(9+15.5i)T+(44.577.0i)T2 1 + (-9 + 15.5i)T + (-44.5 - 77.0i)T^{2}
97 117T+97T2 1 - 17T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.906452039533697385749912433495, −7.83301046189338118479330706563, −7.26413396495480902480192714257, −6.45845115491488280649068569645, −5.68939193425972804540635666383, −4.65388339232225585497341646193, −4.37071512007147997793959811230, −3.01980056397732353003577921481, −2.17012861559638173780064386965, −1.06611658159492471904380735698, 0.55554333174917070613506621137, 1.95834232860131835420589245401, 2.88500172664999356380903062121, 3.66592370656790317181472622958, 4.74086892479543541939111575090, 5.41586058684899082141644201121, 6.29485844519005749814456139549, 7.02407493871765912489542844214, 7.55292415496206884369343412541, 8.629227630009887279145540022626

Graph of the ZZ-function along the critical line