Properties

Label 3528.2.s.p.3313.1
Level $3528$
Weight $2$
Character 3528.3313
Analytic conductor $28.171$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3528,2,Mod(361,3528)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3528, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3528.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.1712218331\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 3313.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 3528.3313
Dual form 3528.2.s.p.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{5} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{5} +(1.50000 + 2.59808i) q^{11} -4.00000 q^{13} +(-2.00000 + 3.46410i) q^{19} +(4.00000 - 6.92820i) q^{23} +(2.00000 + 3.46410i) q^{25} +3.00000 q^{29} +(-2.50000 - 4.33013i) q^{31} +(-4.00000 + 6.92820i) q^{37} +8.00000 q^{41} +6.00000 q^{43} +(-5.00000 + 8.66025i) q^{47} +(4.50000 + 7.79423i) q^{53} +3.00000 q^{55} +(2.50000 + 4.33013i) q^{59} +(-5.00000 + 8.66025i) q^{61} +(-2.00000 + 3.46410i) q^{65} +(-3.00000 - 5.19615i) q^{67} -10.0000 q^{71} +(1.00000 + 1.73205i) q^{73} +(-5.50000 + 9.52628i) q^{79} +7.00000 q^{83} +(9.00000 - 15.5885i) q^{89} +(2.00000 + 3.46410i) q^{95} +17.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{5} + 3 q^{11} - 8 q^{13} - 4 q^{19} + 8 q^{23} + 4 q^{25} + 6 q^{29} - 5 q^{31} - 8 q^{37} + 16 q^{41} + 12 q^{43} - 10 q^{47} + 9 q^{53} + 6 q^{55} + 5 q^{59} - 10 q^{61} - 4 q^{65} - 6 q^{67} - 20 q^{71} + 2 q^{73} - 11 q^{79} + 14 q^{83} + 18 q^{89} + 4 q^{95} + 34 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(1765\) \(2647\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.500000 0.866025i 0.223607 0.387298i −0.732294 0.680989i \(-0.761550\pi\)
0.955901 + 0.293691i \(0.0948835\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) −2.00000 + 3.46410i −0.458831 + 0.794719i −0.998899 0.0469020i \(-0.985065\pi\)
0.540068 + 0.841621i \(0.318398\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 6.92820i 0.834058 1.44463i −0.0607377 0.998154i \(-0.519345\pi\)
0.894795 0.446476i \(-0.147321\pi\)
\(24\) 0 0
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) −2.50000 4.33013i −0.449013 0.777714i 0.549309 0.835619i \(-0.314891\pi\)
−0.998322 + 0.0579057i \(0.981558\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.00000 + 6.92820i −0.657596 + 1.13899i 0.323640 + 0.946180i \(0.395093\pi\)
−0.981236 + 0.192809i \(0.938240\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.00000 1.24939 0.624695 0.780869i \(-0.285223\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) 0 0
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.00000 + 8.66025i −0.729325 + 1.26323i 0.227844 + 0.973698i \(0.426832\pi\)
−0.957169 + 0.289530i \(0.906501\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.50000 + 7.79423i 0.618123 + 1.07062i 0.989828 + 0.142269i \(0.0454398\pi\)
−0.371706 + 0.928351i \(0.621227\pi\)
\(54\) 0 0
\(55\) 3.00000 0.404520
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.50000 + 4.33013i 0.325472 + 0.563735i 0.981608 0.190909i \(-0.0611434\pi\)
−0.656136 + 0.754643i \(0.727810\pi\)
\(60\) 0 0
\(61\) −5.00000 + 8.66025i −0.640184 + 1.10883i 0.345207 + 0.938527i \(0.387809\pi\)
−0.985391 + 0.170305i \(0.945525\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.00000 + 3.46410i −0.248069 + 0.429669i
\(66\) 0 0
\(67\) −3.00000 5.19615i −0.366508 0.634811i 0.622509 0.782613i \(-0.286114\pi\)
−0.989017 + 0.147802i \(0.952780\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −10.0000 −1.18678 −0.593391 0.804914i \(-0.702211\pi\)
−0.593391 + 0.804914i \(0.702211\pi\)
\(72\) 0 0
\(73\) 1.00000 + 1.73205i 0.117041 + 0.202721i 0.918594 0.395203i \(-0.129326\pi\)
−0.801553 + 0.597924i \(0.795992\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −5.50000 + 9.52628i −0.618798 + 1.07179i 0.370907 + 0.928670i \(0.379047\pi\)
−0.989705 + 0.143120i \(0.954286\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.00000 0.768350 0.384175 0.923260i \(-0.374486\pi\)
0.384175 + 0.923260i \(0.374486\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.00000 15.5885i 0.953998 1.65237i 0.217354 0.976093i \(-0.430258\pi\)
0.736644 0.676280i \(-0.236409\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.00000 + 3.46410i 0.205196 + 0.355409i
\(96\) 0 0
\(97\) 17.0000 1.72609 0.863044 0.505128i \(-0.168555\pi\)
0.863044 + 0.505128i \(0.168555\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.00000 + 1.73205i 0.0995037 + 0.172345i 0.911479 0.411346i \(-0.134941\pi\)
−0.811976 + 0.583691i \(0.801608\pi\)
\(102\) 0 0
\(103\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.50000 + 9.52628i −0.531705 + 0.920940i 0.467610 + 0.883935i \(0.345115\pi\)
−0.999315 + 0.0370053i \(0.988218\pi\)
\(108\) 0 0
\(109\) 5.00000 + 8.66025i 0.478913 + 0.829502i 0.999708 0.0241802i \(-0.00769755\pi\)
−0.520794 + 0.853682i \(0.674364\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.00000 0.752577 0.376288 0.926503i \(-0.377200\pi\)
0.376288 + 0.926503i \(0.377200\pi\)
\(114\) 0 0
\(115\) −4.00000 6.92820i −0.373002 0.646058i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −7.00000 −0.621150 −0.310575 0.950549i \(-0.600522\pi\)
−0.310575 + 0.950549i \(0.600522\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.50000 + 12.9904i −0.655278 + 1.13497i 0.326546 + 0.945181i \(0.394115\pi\)
−0.981824 + 0.189794i \(0.939218\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.00000 12.1244i −0.598050 1.03585i −0.993109 0.117198i \(-0.962609\pi\)
0.395058 0.918656i \(-0.370724\pi\)
\(138\) 0 0
\(139\) 22.0000 1.86602 0.933008 0.359856i \(-0.117174\pi\)
0.933008 + 0.359856i \(0.117174\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.00000 10.3923i −0.501745 0.869048i
\(144\) 0 0
\(145\) 1.50000 2.59808i 0.124568 0.215758i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.00000 15.5885i 0.737309 1.27706i −0.216394 0.976306i \(-0.569430\pi\)
0.953703 0.300750i \(-0.0972370\pi\)
\(150\) 0 0
\(151\) 2.50000 + 4.33013i 0.203447 + 0.352381i 0.949637 0.313353i \(-0.101452\pi\)
−0.746190 + 0.665733i \(0.768119\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −5.00000 −0.401610
\(156\) 0 0
\(157\) −2.00000 3.46410i −0.159617 0.276465i 0.775113 0.631822i \(-0.217693\pi\)
−0.934731 + 0.355357i \(0.884359\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −4.00000 + 6.92820i −0.313304 + 0.542659i −0.979076 0.203497i \(-0.934769\pi\)
0.665771 + 0.746156i \(0.268103\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.00000 −0.154765 −0.0773823 0.997001i \(-0.524656\pi\)
−0.0773823 + 0.997001i \(0.524656\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.00000 + 1.73205i −0.0760286 + 0.131685i −0.901533 0.432710i \(-0.857557\pi\)
0.825505 + 0.564396i \(0.190891\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.00000 + 10.3923i 0.448461 + 0.776757i 0.998286 0.0585225i \(-0.0186389\pi\)
−0.549825 + 0.835280i \(0.685306\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.00000 + 6.92820i 0.294086 + 0.509372i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.00000 + 13.8564i −0.578860 + 1.00261i 0.416751 + 0.909021i \(0.363169\pi\)
−0.995610 + 0.0935936i \(0.970165\pi\)
\(192\) 0 0
\(193\) 13.5000 + 23.3827i 0.971751 + 1.68312i 0.690264 + 0.723558i \(0.257494\pi\)
0.281487 + 0.959565i \(0.409172\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 26.0000 1.85242 0.926212 0.377004i \(-0.123046\pi\)
0.926212 + 0.377004i \(0.123046\pi\)
\(198\) 0 0
\(199\) 6.00000 + 10.3923i 0.425329 + 0.736691i 0.996451 0.0841740i \(-0.0268252\pi\)
−0.571122 + 0.820865i \(0.693492\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 4.00000 6.92820i 0.279372 0.483887i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) 6.00000 0.413057 0.206529 0.978441i \(-0.433783\pi\)
0.206529 + 0.978441i \(0.433783\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.00000 5.19615i 0.204598 0.354375i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.00000 −0.0669650 −0.0334825 0.999439i \(-0.510660\pi\)
−0.0334825 + 0.999439i \(0.510660\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.5000 18.1865i −0.696909 1.20708i −0.969533 0.244962i \(-0.921225\pi\)
0.272623 0.962121i \(-0.412109\pi\)
\(228\) 0 0
\(229\) −6.00000 + 10.3923i −0.396491 + 0.686743i −0.993290 0.115648i \(-0.963106\pi\)
0.596799 + 0.802391i \(0.296439\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.0000 + 20.7846i −0.786146 + 1.36165i 0.142166 + 0.989843i \(0.454593\pi\)
−0.928312 + 0.371802i \(0.878740\pi\)
\(234\) 0 0
\(235\) 5.00000 + 8.66025i 0.326164 + 0.564933i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 11.5000 + 19.9186i 0.740780 + 1.28307i 0.952141 + 0.305661i \(0.0988773\pi\)
−0.211360 + 0.977408i \(0.567789\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.00000 13.8564i 0.509028 0.881662i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 11.0000 0.694314 0.347157 0.937807i \(-0.387147\pi\)
0.347157 + 0.937807i \(0.387147\pi\)
\(252\) 0 0
\(253\) 24.0000 1.50887
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.00000 + 12.1244i −0.436648 + 0.756297i −0.997429 0.0716680i \(-0.977168\pi\)
0.560781 + 0.827964i \(0.310501\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7.00000 12.1244i −0.431638 0.747620i 0.565376 0.824833i \(-0.308731\pi\)
−0.997015 + 0.0772134i \(0.975398\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.500000 0.866025i −0.0304855 0.0528025i 0.850380 0.526169i \(-0.176372\pi\)
−0.880866 + 0.473366i \(0.843039\pi\)
\(270\) 0 0
\(271\) −8.50000 + 14.7224i −0.516338 + 0.894324i 0.483482 + 0.875354i \(0.339372\pi\)
−0.999820 + 0.0189696i \(0.993961\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.00000 + 10.3923i −0.361814 + 0.626680i
\(276\) 0 0
\(277\) −4.00000 6.92820i −0.240337 0.416275i 0.720473 0.693482i \(-0.243925\pi\)
−0.960810 + 0.277207i \(0.910591\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −9.00000 15.5885i −0.534994 0.926638i −0.999164 0.0408910i \(-0.986980\pi\)
0.464169 0.885747i \(-0.346353\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −19.0000 −1.10999 −0.554996 0.831853i \(-0.687280\pi\)
−0.554996 + 0.831853i \(0.687280\pi\)
\(294\) 0 0
\(295\) 5.00000 0.291111
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −16.0000 + 27.7128i −0.925304 + 1.60267i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.00000 + 8.66025i 0.286299 + 0.495885i
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 0 0
\(313\) 4.50000 7.79423i 0.254355 0.440556i −0.710365 0.703833i \(-0.751470\pi\)
0.964720 + 0.263278i \(0.0848035\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.50000 11.2583i 0.365076 0.632331i −0.623712 0.781654i \(-0.714376\pi\)
0.988788 + 0.149323i \(0.0477095\pi\)
\(318\) 0 0
\(319\) 4.50000 + 7.79423i 0.251952 + 0.436393i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −8.00000 13.8564i −0.443760 0.768615i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −2.00000 + 3.46410i −0.109930 + 0.190404i −0.915742 0.401768i \(-0.868396\pi\)
0.805812 + 0.592172i \(0.201729\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.00000 −0.327815
\(336\) 0 0
\(337\) −15.0000 −0.817102 −0.408551 0.912735i \(-0.633966\pi\)
−0.408551 + 0.912735i \(0.633966\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.50000 12.9904i 0.406148 0.703469i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.0000 17.3205i −0.536828 0.929814i −0.999072 0.0430610i \(-0.986289\pi\)
0.462244 0.886753i \(-0.347044\pi\)
\(348\) 0 0
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4.00000 6.92820i −0.212899 0.368751i 0.739722 0.672913i \(-0.234957\pi\)
−0.952620 + 0.304162i \(0.901624\pi\)
\(354\) 0 0
\(355\) −5.00000 + 8.66025i −0.265372 + 0.459639i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.00000 5.19615i 0.158334 0.274242i −0.775934 0.630814i \(-0.782721\pi\)
0.934268 + 0.356572i \(0.116054\pi\)
\(360\) 0 0
\(361\) 1.50000 + 2.59808i 0.0789474 + 0.136741i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.00000 0.104685
\(366\) 0 0
\(367\) −3.50000 6.06218i −0.182699 0.316443i 0.760100 0.649806i \(-0.225150\pi\)
−0.942799 + 0.333363i \(0.891817\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −8.00000 + 13.8564i −0.414224 + 0.717458i −0.995347 0.0963587i \(-0.969280\pi\)
0.581122 + 0.813816i \(0.302614\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.00000 + 1.73205i −0.0510976 + 0.0885037i −0.890443 0.455095i \(-0.849605\pi\)
0.839345 + 0.543599i \(0.182939\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 13.0000 + 22.5167i 0.659126 + 1.14164i 0.980842 + 0.194804i \(0.0624070\pi\)
−0.321716 + 0.946836i \(0.604260\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.50000 + 9.52628i 0.276735 + 0.479319i
\(396\) 0 0
\(397\) 14.0000 24.2487i 0.702640 1.21701i −0.264897 0.964277i \(-0.585338\pi\)
0.967537 0.252731i \(-0.0813288\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −4.00000 + 6.92820i −0.199750 + 0.345978i −0.948447 0.316934i \(-0.897346\pi\)
0.748697 + 0.662912i \(0.230680\pi\)
\(402\) 0 0
\(403\) 10.0000 + 17.3205i 0.498135 + 0.862796i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −24.0000 −1.18964
\(408\) 0 0
\(409\) 3.50000 + 6.06218i 0.173064 + 0.299755i 0.939490 0.342578i \(-0.111300\pi\)
−0.766426 + 0.642333i \(0.777967\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 3.50000 6.06218i 0.171808 0.297581i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6.00000 10.3923i −0.289010 0.500580i 0.684564 0.728953i \(-0.259993\pi\)
−0.973574 + 0.228373i \(0.926659\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 16.0000 + 27.7128i 0.765384 + 1.32568i
\(438\) 0 0
\(439\) −4.50000 + 7.79423i −0.214773 + 0.371998i −0.953202 0.302333i \(-0.902235\pi\)
0.738429 + 0.674331i \(0.235568\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.500000 + 0.866025i −0.0237557 + 0.0411461i −0.877659 0.479286i \(-0.840896\pi\)
0.853903 + 0.520432i \(0.174229\pi\)
\(444\) 0 0
\(445\) −9.00000 15.5885i −0.426641 0.738964i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4.00000 −0.188772 −0.0943858 0.995536i \(-0.530089\pi\)
−0.0943858 + 0.995536i \(0.530089\pi\)
\(450\) 0 0
\(451\) 12.0000 + 20.7846i 0.565058 + 0.978709i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 8.50000 14.7224i 0.397613 0.688686i −0.595818 0.803120i \(-0.703172\pi\)
0.993431 + 0.114433i \(0.0365053\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14.0000 24.2487i 0.647843 1.12210i −0.335794 0.941935i \(-0.609005\pi\)
0.983637 0.180161i \(-0.0576619\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.00000 + 15.5885i 0.413820 + 0.716758i
\(474\) 0 0
\(475\) −16.0000 −0.734130
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.00000 5.19615i −0.137073 0.237418i 0.789314 0.613990i \(-0.210436\pi\)
−0.926388 + 0.376571i \(0.877103\pi\)
\(480\) 0 0
\(481\) 16.0000 27.7128i 0.729537 1.26360i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.50000 14.7224i 0.385965 0.668511i
\(486\) 0 0
\(487\) −18.5000 32.0429i −0.838315 1.45200i −0.891303 0.453409i \(-0.850208\pi\)
0.0529875 0.998595i \(-0.483126\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.00000 0.406164 0.203082 0.979162i \(-0.434904\pi\)
0.203082 + 0.979162i \(0.434904\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −5.00000 + 8.66025i −0.223831 + 0.387686i −0.955968 0.293471i \(-0.905190\pi\)
0.732137 + 0.681157i \(0.238523\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) 0 0
\(505\) 2.00000 0.0889988
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 19.5000 33.7750i 0.864322 1.49705i −0.00339621 0.999994i \(-0.501081\pi\)
0.867719 0.497056i \(-0.165586\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −30.0000 −1.31940
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9.00000 + 15.5885i 0.394297 + 0.682943i 0.993011 0.118020i \(-0.0376547\pi\)
−0.598714 + 0.800963i \(0.704321\pi\)
\(522\) 0 0
\(523\) −6.00000 + 10.3923i −0.262362 + 0.454424i −0.966869 0.255273i \(-0.917835\pi\)
0.704507 + 0.709697i \(0.251168\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −20.5000 35.5070i −0.891304 1.54378i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −32.0000 −1.38607
\(534\) 0 0
\(535\) 5.50000 + 9.52628i 0.237786 + 0.411857i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −17.0000 + 29.4449i −0.730887 + 1.26593i 0.225617 + 0.974216i \(0.427560\pi\)
−0.956504 + 0.291718i \(0.905773\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10.0000 0.428353
\(546\) 0 0
\(547\) −8.00000 −0.342055 −0.171028 0.985266i \(-0.554709\pi\)
−0.171028 + 0.985266i \(0.554709\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6.00000 + 10.3923i −0.255609 + 0.442727i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.50000 + 12.9904i 0.317785 + 0.550420i 0.980026 0.198871i \(-0.0637276\pi\)
−0.662240 + 0.749291i \(0.730394\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −19.5000 33.7750i −0.821827 1.42345i −0.904320 0.426855i \(-0.859622\pi\)
0.0824933 0.996592i \(-0.473712\pi\)
\(564\) 0 0
\(565\) 4.00000 6.92820i 0.168281 0.291472i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.00000 10.3923i 0.251533 0.435668i −0.712415 0.701758i \(-0.752399\pi\)
0.963948 + 0.266090i \(0.0857319\pi\)
\(570\) 0 0
\(571\) −11.0000 19.0526i −0.460336 0.797325i 0.538642 0.842535i \(-0.318938\pi\)
−0.998978 + 0.0452101i \(0.985604\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 32.0000 1.33449
\(576\) 0 0
\(577\) −16.5000 28.5788i −0.686904 1.18975i −0.972834 0.231502i \(-0.925636\pi\)
0.285930 0.958250i \(-0.407697\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −13.5000 + 23.3827i −0.559113 + 0.968412i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 45.0000 1.85735 0.928674 0.370896i \(-0.120949\pi\)
0.928674 + 0.370896i \(0.120949\pi\)
\(588\) 0 0
\(589\) 20.0000 0.824086
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −21.0000 36.3731i −0.858037 1.48616i −0.873799 0.486287i \(-0.838351\pi\)
0.0157622 0.999876i \(-0.494983\pi\)
\(600\) 0 0
\(601\) 13.0000 0.530281 0.265141 0.964210i \(-0.414582\pi\)
0.265141 + 0.964210i \(0.414582\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.00000 1.73205i −0.0406558 0.0704179i
\(606\) 0 0
\(607\) 6.50000 11.2583i 0.263827 0.456962i −0.703429 0.710766i \(-0.748349\pi\)
0.967256 + 0.253804i \(0.0816819\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 20.0000 34.6410i 0.809113 1.40143i
\(612\) 0 0
\(613\) −4.00000 6.92820i −0.161558 0.279827i 0.773869 0.633345i \(-0.218319\pi\)
−0.935428 + 0.353518i \(0.884985\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 30.0000 1.20775 0.603877 0.797077i \(-0.293622\pi\)
0.603877 + 0.797077i \(0.293622\pi\)
\(618\) 0 0
\(619\) 3.00000 + 5.19615i 0.120580 + 0.208851i 0.919997 0.391926i \(-0.128191\pi\)
−0.799416 + 0.600777i \(0.794858\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −11.0000 −0.437903 −0.218952 0.975736i \(-0.570264\pi\)
−0.218952 + 0.975736i \(0.570264\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.50000 + 6.06218i −0.138893 + 0.240570i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −11.0000 19.0526i −0.434474 0.752531i 0.562779 0.826608i \(-0.309732\pi\)
−0.997253 + 0.0740768i \(0.976399\pi\)
\(642\) 0 0
\(643\) −46.0000 −1.81406 −0.907031 0.421063i \(-0.861657\pi\)
−0.907031 + 0.421063i \(0.861657\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 25.0000 + 43.3013i 0.982851 + 1.70235i 0.651120 + 0.758975i \(0.274299\pi\)
0.331731 + 0.943374i \(0.392367\pi\)
\(648\) 0 0
\(649\) −7.50000 + 12.9904i −0.294401 + 0.509917i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.50000 12.9904i 0.293498 0.508353i −0.681137 0.732156i \(-0.738514\pi\)
0.974634 + 0.223803i \(0.0718474\pi\)
\(654\) 0 0
\(655\) 7.50000 + 12.9904i 0.293049 + 0.507576i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −24.0000 −0.934907 −0.467454 0.884018i \(-0.654829\pi\)
−0.467454 + 0.884018i \(0.654829\pi\)
\(660\) 0 0
\(661\) 19.0000 + 32.9090i 0.739014 + 1.28001i 0.952940 + 0.303160i \(0.0980418\pi\)
−0.213925 + 0.976850i \(0.568625\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 12.0000 20.7846i 0.464642 0.804783i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −30.0000 −1.15814
\(672\) 0 0
\(673\) 29.0000 1.11787 0.558934 0.829212i \(-0.311211\pi\)
0.558934 + 0.829212i \(0.311211\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9.50000 + 16.4545i −0.365115 + 0.632397i −0.988795 0.149283i \(-0.952304\pi\)
0.623680 + 0.781680i \(0.285637\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.50000 + 14.7224i 0.325243 + 0.563338i 0.981562 0.191146i \(-0.0612204\pi\)
−0.656318 + 0.754484i \(0.727887\pi\)
\(684\) 0 0
\(685\) −14.0000 −0.534913
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −18.0000 31.1769i −0.685745 1.18775i
\(690\) 0 0
\(691\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 11.0000 19.0526i 0.417254 0.722705i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −5.00000 −0.188847 −0.0944237 0.995532i \(-0.530101\pi\)
−0.0944237 + 0.995532i \(0.530101\pi\)
\(702\) 0 0
\(703\) −16.0000 27.7128i −0.603451 1.04521i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −3.00000 + 5.19615i −0.112667 + 0.195146i −0.916845 0.399244i \(-0.869273\pi\)
0.804178 + 0.594389i \(0.202606\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −40.0000 −1.49801
\(714\) 0 0
\(715\) −12.0000 −0.448775
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17.0000 29.4449i 0.633993 1.09811i −0.352735 0.935723i \(-0.614748\pi\)
0.986728 0.162385i \(-0.0519185\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.00000 + 10.3923i 0.222834 + 0.385961i
\(726\) 0 0
\(727\) −47.0000 −1.74313 −0.871567 0.490277i \(-0.836896\pi\)
−0.871567 + 0.490277i \(0.836896\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 7.00000 12.1244i 0.258551 0.447823i −0.707303 0.706910i \(-0.750088\pi\)
0.965854 + 0.259087i \(0.0834217\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.00000 15.5885i 0.331519 0.574208i
\(738\) 0 0
\(739\) −5.00000 8.66025i −0.183928 0.318573i 0.759287 0.650756i \(-0.225548\pi\)
−0.943215 + 0.332184i \(0.892215\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −34.0000 −1.24734 −0.623670 0.781688i \(-0.714359\pi\)
−0.623670 + 0.781688i \(0.714359\pi\)
\(744\) 0 0
\(745\) −9.00000 15.5885i −0.329734 0.571117i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 13.5000 23.3827i 0.492622 0.853246i −0.507342 0.861745i \(-0.669372\pi\)
0.999964 + 0.00849853i \(0.00270520\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 5.00000 0.181969
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.00000 10.3923i 0.217500 0.376721i −0.736543 0.676391i \(-0.763543\pi\)
0.954043 + 0.299670i \(0.0968765\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −10.0000 17.3205i −0.361079 0.625407i
\(768\) 0 0
\(769\) −37.0000 −1.33425 −0.667127 0.744944i \(-0.732476\pi\)
−0.667127 + 0.744944i \(0.732476\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13.0000 + 22.5167i 0.467578 + 0.809868i 0.999314 0.0370420i \(-0.0117935\pi\)
−0.531736 + 0.846910i \(0.678460\pi\)
\(774\) 0 0
\(775\) 10.0000 17.3205i 0.359211 0.622171i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −16.0000 + 27.7128i −0.573259 + 0.992915i
\(780\) 0 0
\(781\) −15.0000 25.9808i −0.536742 0.929665i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.00000 −0.142766
\(786\) 0 0
\(787\) −11.0000 19.0526i −0.392108 0.679150i 0.600620 0.799535i \(-0.294921\pi\)
−0.992727 + 0.120384i \(0.961587\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 20.0000 34.6410i 0.710221 1.23014i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.00000 0.106265 0.0531327 0.998587i \(-0.483079\pi\)
0.0531327 + 0.998587i \(0.483079\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.00000 + 5.19615i −0.105868 + 0.183368i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −8.00000 13.8564i −0.281265 0.487165i 0.690432 0.723398i \(-0.257421\pi\)
−0.971697 + 0.236232i \(0.924087\pi\)
\(810\) 0 0
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.00000 + 6.92820i 0.140114 + 0.242684i
\(816\) 0 0
\(817\) −12.0000 + 20.7846i −0.419827 + 0.727161i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −19.5000 + 33.7750i −0.680555 + 1.17876i 0.294257 + 0.955726i \(0.404928\pi\)
−0.974812 + 0.223029i \(0.928406\pi\)
\(822\) 0 0
\(823\) −16.0000 27.7128i −0.557725 0.966008i −0.997686 0.0679910i \(-0.978341\pi\)
0.439961 0.898017i \(-0.354992\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 41.0000 1.42571 0.712855 0.701312i \(-0.247402\pi\)
0.712855 + 0.701312i \(0.247402\pi\)
\(828\) 0 0
\(829\) −2.00000 3.46410i −0.0694629 0.120313i 0.829202 0.558949i \(-0.188795\pi\)
−0.898665 + 0.438636i \(0.855462\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −1.00000 + 1.73205i −0.0346064 + 0.0599401i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.50000 2.59808i 0.0516016 0.0893765i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 32.0000 + 55.4256i 1.09695 + 1.89997i
\(852\) 0 0
\(853\) −14.0000 −0.479351 −0.239675 0.970853i \(-0.577041\pi\)
−0.239675 + 0.970853i \(0.577041\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −7.00000 12.1244i −0.239115 0.414160i 0.721345 0.692576i \(-0.243524\pi\)
−0.960461 + 0.278416i \(0.910191\pi\)
\(858\) 0 0
\(859\) −7.00000 + 12.1244i −0.238837 + 0.413678i −0.960381 0.278691i \(-0.910099\pi\)
0.721544 + 0.692369i \(0.243433\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 11.0000 19.0526i 0.374444 0.648557i −0.615799 0.787903i \(-0.711167\pi\)
0.990244 + 0.139346i \(0.0445001\pi\)
\(864\) 0 0
\(865\) 1.00000 + 1.73205i 0.0340010 + 0.0588915i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −33.0000 −1.11945
\(870\) 0 0
\(871\) 12.0000 + 20.7846i 0.406604 + 0.704260i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 16.0000 27.7128i 0.540282 0.935795i −0.458606 0.888640i \(-0.651651\pi\)
0.998888 0.0471555i \(-0.0150156\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −54.0000 −1.81931 −0.909653 0.415369i \(-0.863653\pi\)
−0.909653 + 0.415369i \(0.863653\pi\)
\(882\) 0 0
\(883\) 40.0000 1.34611 0.673054 0.739594i \(-0.264982\pi\)
0.673054 + 0.739594i \(0.264982\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 24.0000 41.5692i 0.805841 1.39576i −0.109881 0.993945i \(-0.535047\pi\)
0.915722 0.401813i \(-0.131620\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −20.0000 34.6410i −0.669274 1.15922i
\(894\) 0 0
\(895\) 12.0000 0.401116
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −7.50000 12.9904i −0.250139 0.433253i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 8.00000 + 13.8564i 0.265636 + 0.460094i 0.967730 0.251990i \(-0.0810849\pi\)
−0.702094 + 0.712084i \(0.747752\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6.00000 −0.198789 −0.0993944 0.995048i \(-0.531691\pi\)
−0.0993944 + 0.995048i \(0.531691\pi\)
\(912\) 0 0
\(913\) 10.5000 + 18.1865i 0.347499 + 0.601886i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 8.00000 13.8564i 0.263896 0.457081i −0.703378 0.710816i \(-0.748326\pi\)
0.967274 + 0.253735i \(0.0816592\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 40.0000 1.31662
\(924\) 0 0
\(925\) −32.0000 −1.05215
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −21.0000 + 36.3731i −0.688988 + 1.19336i 0.283178 + 0.959067i \(0.408611\pi\)
−0.972166 + 0.234294i \(0.924722\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −19.0000 −0.620703 −0.310351 0.950622i \(-0.600447\pi\)
−0.310351 + 0.950622i \(0.600447\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 6.50000 + 11.2583i 0.211894 + 0.367011i 0.952307 0.305141i \(-0.0987035\pi\)
−0.740413 + 0.672152i \(0.765370\pi\)
\(942\) 0 0
\(943\) 32.0000 55.4256i 1.04206 1.80491i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −24.0000 + 41.5692i −0.779895 + 1.35082i 0.152106 + 0.988364i \(0.451394\pi\)
−0.932002 + 0.362454i \(0.881939\pi\)
\(948\) 0 0
\(949\) −4.00000 6.92820i −0.129845 0.224899i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 38.0000 1.23094 0.615470 0.788160i \(-0.288966\pi\)
0.615470 + 0.788160i \(0.288966\pi\)
\(954\) 0 0
\(955\) 8.00000 + 13.8564i 0.258874 + 0.448383i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 3.00000 5.19615i 0.0967742 0.167618i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 27.0000 0.869161
\(966\) 0 0
\(967\) 3.00000 0.0964735 0.0482367 0.998836i \(-0.484640\pi\)
0.0482367 + 0.998836i \(0.484640\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −12.5000 + 21.6506i −0.401144 + 0.694802i −0.993864 0.110607i \(-0.964721\pi\)
0.592720 + 0.805408i \(0.298054\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −11.0000 19.0526i −0.351921 0.609545i 0.634665 0.772787i \(-0.281138\pi\)
−0.986586 + 0.163242i \(0.947805\pi\)
\(978\) 0 0
\(979\) 54.0000 1.72585
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −22.0000 38.1051i −0.701691 1.21536i −0.967872 0.251442i \(-0.919095\pi\)
0.266181 0.963923i \(-0.414238\pi\)
\(984\) 0 0
\(985\) 13.0000 22.5167i 0.414214 0.717440i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 24.0000 41.5692i 0.763156 1.32182i
\(990\) 0 0
\(991\) −7.50000 12.9904i −0.238245 0.412653i 0.721966 0.691929i \(-0.243239\pi\)
−0.960211 + 0.279276i \(0.909906\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 12.0000 0.380426
\(996\) 0 0
\(997\) −13.0000 22.5167i −0.411714 0.713110i 0.583363 0.812211i \(-0.301736\pi\)
−0.995077 + 0.0991016i \(0.968403\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3528.2.s.p.3313.1 2
3.2 odd 2 1176.2.q.g.961.1 2
7.2 even 3 3528.2.a.i.1.1 1
7.3 odd 6 504.2.s.d.361.1 2
7.4 even 3 inner 3528.2.s.p.361.1 2
7.5 odd 6 3528.2.a.q.1.1 1
7.6 odd 2 504.2.s.d.289.1 2
12.11 even 2 2352.2.q.f.961.1 2
21.2 odd 6 1176.2.a.c.1.1 1
21.5 even 6 1176.2.a.g.1.1 1
21.11 odd 6 1176.2.q.g.361.1 2
21.17 even 6 168.2.q.a.25.1 2
21.20 even 2 168.2.q.a.121.1 yes 2
28.3 even 6 1008.2.s.f.865.1 2
28.19 even 6 7056.2.a.bk.1.1 1
28.23 odd 6 7056.2.a.t.1.1 1
28.27 even 2 1008.2.s.f.289.1 2
84.11 even 6 2352.2.q.f.1537.1 2
84.23 even 6 2352.2.a.u.1.1 1
84.47 odd 6 2352.2.a.g.1.1 1
84.59 odd 6 336.2.q.e.193.1 2
84.83 odd 2 336.2.q.e.289.1 2
168.5 even 6 9408.2.a.ba.1.1 1
168.59 odd 6 1344.2.q.d.193.1 2
168.83 odd 2 1344.2.q.d.961.1 2
168.101 even 6 1344.2.q.o.193.1 2
168.107 even 6 9408.2.a.p.1.1 1
168.125 even 2 1344.2.q.o.961.1 2
168.131 odd 6 9408.2.a.cq.1.1 1
168.149 odd 6 9408.2.a.cf.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.q.a.25.1 2 21.17 even 6
168.2.q.a.121.1 yes 2 21.20 even 2
336.2.q.e.193.1 2 84.59 odd 6
336.2.q.e.289.1 2 84.83 odd 2
504.2.s.d.289.1 2 7.6 odd 2
504.2.s.d.361.1 2 7.3 odd 6
1008.2.s.f.289.1 2 28.27 even 2
1008.2.s.f.865.1 2 28.3 even 6
1176.2.a.c.1.1 1 21.2 odd 6
1176.2.a.g.1.1 1 21.5 even 6
1176.2.q.g.361.1 2 21.11 odd 6
1176.2.q.g.961.1 2 3.2 odd 2
1344.2.q.d.193.1 2 168.59 odd 6
1344.2.q.d.961.1 2 168.83 odd 2
1344.2.q.o.193.1 2 168.101 even 6
1344.2.q.o.961.1 2 168.125 even 2
2352.2.a.g.1.1 1 84.47 odd 6
2352.2.a.u.1.1 1 84.23 even 6
2352.2.q.f.961.1 2 12.11 even 2
2352.2.q.f.1537.1 2 84.11 even 6
3528.2.a.i.1.1 1 7.2 even 3
3528.2.a.q.1.1 1 7.5 odd 6
3528.2.s.p.361.1 2 7.4 even 3 inner
3528.2.s.p.3313.1 2 1.1 even 1 trivial
7056.2.a.t.1.1 1 28.23 odd 6
7056.2.a.bk.1.1 1 28.19 even 6
9408.2.a.p.1.1 1 168.107 even 6
9408.2.a.ba.1.1 1 168.5 even 6
9408.2.a.cf.1.1 1 168.149 odd 6
9408.2.a.cq.1.1 1 168.131 odd 6