L(s) = 1 | − 4-s − 2·7-s + 9-s + 16-s − 25-s + 2·28-s + 2·31-s − 36-s − 2·37-s + 4·43-s + 49-s − 2·63-s − 2·64-s − 2·73-s − 2·79-s − 4·97-s + 100-s − 2·103-s − 2·109-s − 2·112-s − 2·121-s − 2·124-s + 127-s + 131-s + 137-s + 139-s + 144-s + ⋯ |
L(s) = 1 | − 4-s − 2·7-s + 9-s + 16-s − 25-s + 2·28-s + 2·31-s − 36-s − 2·37-s + 4·43-s + 49-s − 2·63-s − 2·64-s − 2·73-s − 2·79-s − 4·97-s + 100-s − 2·103-s − 2·109-s − 2·112-s − 2·121-s − 2·124-s + 127-s + 131-s + 137-s + 139-s + 144-s + ⋯ |
Λ(s)=(=((34⋅74⋅138)s/2ΓC(s)4L(s)Λ(1−s)
Λ(s)=(=((34⋅74⋅138)s/2ΓC(s)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅74⋅138
|
Sign: |
1
|
Analytic conductor: |
9.84130 |
Root analytic conductor: |
1.33085 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅74⋅138, ( :0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
0.01165843243 |
L(21) |
≈ |
0.01165843243 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C22 | 1−T2+T4 |
| 7 | C2 | (1+T+T2)2 |
| 13 | | 1 |
good | 2 | C2×C22 | (1+T2)2(1−T2+T4) |
| 5 | C2×C22 | (1+T2)2(1−T2+T4) |
| 11 | C2 | (1−T+T2)2(1+T+T2)2 |
| 17 | C2×C22 | (1+T2)2(1−T2+T4) |
| 19 | C22 | (1−T2+T4)2 |
| 23 | C2×C22 | (1+T2)2(1−T2+T4) |
| 29 | C22 | (1−T2+T4)2 |
| 31 | C1×C2 | (1−T)4(1+T+T2)2 |
| 37 | C1×C2 | (1+T)4(1−T+T2)2 |
| 41 | C22 | (1−T2+T4)2 |
| 43 | C2 | (1−T+T2)4 |
| 47 | C2×C22 | (1+T2)2(1−T2+T4) |
| 53 | C2×C22 | (1+T2)2(1−T2+T4) |
| 59 | C2×C22 | (1+T2)2(1−T2+T4) |
| 61 | C22 | (1−T2+T4)2 |
| 67 | C22 | (1−T2+T4)2 |
| 71 | C22 | (1−T2+T4)2 |
| 73 | C1×C2 | (1+T)4(1−T+T2)2 |
| 79 | C1×C2 | (1+T)4(1−T+T2)2 |
| 83 | C1×C1 | (1−T)4(1+T)4 |
| 89 | C2×C22 | (1+T2)2(1−T2+T4) |
| 97 | C2 | (1+T+T2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.17991199966726997296602831919, −6.11307998530478322444070964505, −5.87209672797094643549803054868, −5.58207636277526877694270090181, −5.56522204954389770241310280453, −5.23863685721009653849259235095, −5.16822631286312359879695882913, −4.67708045589389552014972631975, −4.64067466894784541431617508837, −4.40418095837583258812050349012, −4.08736645078950007892335390638, −3.98956672634286970689886381270, −3.86820654931012297272886371918, −3.73077619907310873323034468829, −3.40983729907087796069023361136, −3.13063636244558393235943834579, −2.72117364702047314515493220984, −2.62907215917153676817882548423, −2.57439242690243099995285761355, −2.46360901423523538128158775844, −1.58650792027432124703707891705, −1.40031750657258055488451401178, −1.33183346373861693426891108344, −1.04276345699506312281409838878, −0.04382197864941612171331580702,
0.04382197864941612171331580702, 1.04276345699506312281409838878, 1.33183346373861693426891108344, 1.40031750657258055488451401178, 1.58650792027432124703707891705, 2.46360901423523538128158775844, 2.57439242690243099995285761355, 2.62907215917153676817882548423, 2.72117364702047314515493220984, 3.13063636244558393235943834579, 3.40983729907087796069023361136, 3.73077619907310873323034468829, 3.86820654931012297272886371918, 3.98956672634286970689886381270, 4.08736645078950007892335390638, 4.40418095837583258812050349012, 4.64067466894784541431617508837, 4.67708045589389552014972631975, 5.16822631286312359879695882913, 5.23863685721009653849259235095, 5.56522204954389770241310280453, 5.58207636277526877694270090181, 5.87209672797094643549803054868, 6.11307998530478322444070964505, 6.17991199966726997296602831919