Properties

Label 8-3549e4-1.1-c0e4-0-0
Degree $8$
Conductor $1.586\times 10^{14}$
Sign $1$
Analytic cond. $9.84130$
Root an. cond. $1.33085$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 2·7-s + 9-s + 16-s − 25-s + 2·28-s + 2·31-s − 36-s − 2·37-s + 4·43-s + 49-s − 2·63-s − 2·64-s − 2·73-s − 2·79-s − 4·97-s + 100-s − 2·103-s − 2·109-s − 2·112-s − 2·121-s − 2·124-s + 127-s + 131-s + 137-s + 139-s + 144-s + ⋯
L(s)  = 1  − 4-s − 2·7-s + 9-s + 16-s − 25-s + 2·28-s + 2·31-s − 36-s − 2·37-s + 4·43-s + 49-s − 2·63-s − 2·64-s − 2·73-s − 2·79-s − 4·97-s + 100-s − 2·103-s − 2·109-s − 2·112-s − 2·121-s − 2·124-s + 127-s + 131-s + 137-s + 139-s + 144-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 7^{4} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(9.84130\)
Root analytic conductor: \(1.33085\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 7^{4} \cdot 13^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.01165843243\)
\(L(\frac12)\) \(\approx\) \(0.01165843243\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2^2$ \( 1 - T^{2} + T^{4} \)
7$C_2$ \( ( 1 + T + T^{2} )^{2} \)
13 \( 1 \)
good2$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
5$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
11$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
17$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
19$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
23$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
29$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
31$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
37$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
41$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
43$C_2$ \( ( 1 - T + T^{2} )^{4} \)
47$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
53$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
59$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
61$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
79$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
89$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
97$C_2$ \( ( 1 + T + T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.17991199966726997296602831919, −6.11307998530478322444070964505, −5.87209672797094643549803054868, −5.58207636277526877694270090181, −5.56522204954389770241310280453, −5.23863685721009653849259235095, −5.16822631286312359879695882913, −4.67708045589389552014972631975, −4.64067466894784541431617508837, −4.40418095837583258812050349012, −4.08736645078950007892335390638, −3.98956672634286970689886381270, −3.86820654931012297272886371918, −3.73077619907310873323034468829, −3.40983729907087796069023361136, −3.13063636244558393235943834579, −2.72117364702047314515493220984, −2.62907215917153676817882548423, −2.57439242690243099995285761355, −2.46360901423523538128158775844, −1.58650792027432124703707891705, −1.40031750657258055488451401178, −1.33183346373861693426891108344, −1.04276345699506312281409838878, −0.04382197864941612171331580702, 0.04382197864941612171331580702, 1.04276345699506312281409838878, 1.33183346373861693426891108344, 1.40031750657258055488451401178, 1.58650792027432124703707891705, 2.46360901423523538128158775844, 2.57439242690243099995285761355, 2.62907215917153676817882548423, 2.72117364702047314515493220984, 3.13063636244558393235943834579, 3.40983729907087796069023361136, 3.73077619907310873323034468829, 3.86820654931012297272886371918, 3.98956672634286970689886381270, 4.08736645078950007892335390638, 4.40418095837583258812050349012, 4.64067466894784541431617508837, 4.67708045589389552014972631975, 5.16822631286312359879695882913, 5.23863685721009653849259235095, 5.56522204954389770241310280453, 5.58207636277526877694270090181, 5.87209672797094643549803054868, 6.11307998530478322444070964505, 6.17991199966726997296602831919

Graph of the $Z$-function along the critical line