Properties

Label 3549.1.bk.d.170.2
Level $3549$
Weight $1$
Character 3549.170
Analytic conductor $1.771$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3549,1,Mod(170,3549)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3549, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3549.170");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3549 = 3 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3549.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.77118172983\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 273)
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.74529.1

Embedding invariants

Embedding label 170.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 3549.170
Dual form 3549.1.bk.d.1691.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.866025 - 0.500000i) q^{3} +(0.866025 + 0.500000i) q^{5} +1.00000 q^{6} +(-0.500000 + 0.866025i) q^{7} -1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(0.500000 + 0.866025i) q^{10} +(-0.866025 + 0.500000i) q^{14} +1.00000 q^{15} +(0.500000 - 0.866025i) q^{16} +(0.866025 - 0.500000i) q^{17} +(0.866025 - 0.500000i) q^{18} +1.00000i q^{21} +(-0.866025 - 0.500000i) q^{23} +(-0.500000 - 0.866025i) q^{24} -1.00000i q^{27} +1.00000i q^{29} +(0.866025 + 0.500000i) q^{30} +(0.500000 + 0.866025i) q^{31} +1.00000 q^{34} +(-0.866025 + 0.500000i) q^{35} +(-0.500000 + 0.866025i) q^{37} +(0.500000 - 0.866025i) q^{40} -1.00000i q^{41} +(-0.500000 + 0.866025i) q^{42} +1.00000 q^{43} +(0.866025 - 0.500000i) q^{45} +(-0.500000 - 0.866025i) q^{46} +(0.866025 + 0.500000i) q^{47} -1.00000i q^{48} +(-0.500000 - 0.866025i) q^{49} +(0.500000 - 0.866025i) q^{51} +(-0.866025 + 0.500000i) q^{53} +(0.500000 - 0.866025i) q^{54} +(0.866025 + 0.500000i) q^{56} +(-0.500000 + 0.866025i) q^{58} +(-0.866025 + 0.500000i) q^{59} +1.00000i q^{62} +(0.500000 + 0.866025i) q^{63} -1.00000 q^{64} -1.00000 q^{69} -1.00000 q^{70} +1.00000i q^{71} +(-0.866025 - 0.500000i) q^{72} +(-0.500000 - 0.866025i) q^{73} +(-0.866025 + 0.500000i) q^{74} +(-0.500000 + 0.866025i) q^{79} +(0.866025 - 0.500000i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(0.500000 - 0.866025i) q^{82} +1.00000 q^{85} +(0.866025 + 0.500000i) q^{86} +(0.500000 + 0.866025i) q^{87} +(0.866025 + 0.500000i) q^{89} +1.00000 q^{90} +(0.866025 + 0.500000i) q^{93} +(0.500000 + 0.866025i) q^{94} -1.00000 q^{97} -1.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{6} - 2 q^{7} + 2 q^{9} + 2 q^{10} + 4 q^{15} + 2 q^{16} - 2 q^{24} + 2 q^{31} + 4 q^{34} - 2 q^{37} + 2 q^{40} - 2 q^{42} + 4 q^{43} - 2 q^{46} - 2 q^{49} + 2 q^{51} + 2 q^{54} - 2 q^{58} + 2 q^{63}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3549\mathbb{Z}\right)^\times\).

\(n\) \(1184\) \(1522\) \(3382\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(3\) 0.866025 0.500000i 0.866025 0.500000i
\(4\) 0 0
\(5\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(6\) 1.00000 1.00000
\(7\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(8\) 1.00000i 1.00000i
\(9\) 0.500000 0.866025i 0.500000 0.866025i
\(10\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(15\) 1.00000 1.00000
\(16\) 0.500000 0.866025i 0.500000 0.866025i
\(17\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0.866025 0.500000i 0.866025 0.500000i
\(19\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(20\) 0 0
\(21\) 1.00000i 1.00000i
\(22\) 0 0
\(23\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) −0.500000 0.866025i −0.500000 0.866025i
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 1.00000i
\(28\) 0 0
\(29\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(31\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 1.00000 1.00000
\(35\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(36\) 0 0
\(37\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.500000 0.866025i 0.500000 0.866025i
\(41\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(42\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(43\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(44\) 0 0
\(45\) 0.866025 0.500000i 0.866025 0.500000i
\(46\) −0.500000 0.866025i −0.500000 0.866025i
\(47\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(48\) 1.00000i 1.00000i
\(49\) −0.500000 0.866025i −0.500000 0.866025i
\(50\) 0 0
\(51\) 0.500000 0.866025i 0.500000 0.866025i
\(52\) 0 0
\(53\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(54\) 0.500000 0.866025i 0.500000 0.866025i
\(55\) 0 0
\(56\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(57\) 0 0
\(58\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(59\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(62\) 1.00000i 1.00000i
\(63\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(64\) −1.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(68\) 0 0
\(69\) −1.00000 −1.00000
\(70\) −1.00000 −1.00000
\(71\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(72\) −0.866025 0.500000i −0.866025 0.500000i
\(73\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(74\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(80\) 0.866025 0.500000i 0.866025 0.500000i
\(81\) −0.500000 0.866025i −0.500000 0.866025i
\(82\) 0.500000 0.866025i 0.500000 0.866025i
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 1.00000 1.00000
\(86\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(87\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(88\) 0 0
\(89\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(90\) 1.00000 1.00000
\(91\) 0 0
\(92\) 0 0
\(93\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(94\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(95\) 0 0
\(96\) 0 0
\(97\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) 1.00000i 1.00000i
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(102\) 0.866025 0.500000i 0.866025 0.500000i
\(103\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(106\) −1.00000 −1.00000
\(107\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 1.00000i 1.00000i
\(112\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(113\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(114\) 0 0
\(115\) −0.500000 0.866025i −0.500000 0.866025i
\(116\) 0 0
\(117\) 0 0
\(118\) −1.00000 −1.00000
\(119\) 1.00000i 1.00000i
\(120\) 1.00000i 1.00000i
\(121\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(122\) 0 0
\(123\) −0.500000 0.866025i −0.500000 0.866025i
\(124\) 0 0
\(125\) 1.00000i 1.00000i
\(126\) 1.00000i 1.00000i
\(127\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(128\) −0.866025 0.500000i −0.866025 0.500000i
\(129\) 0.866025 0.500000i 0.866025 0.500000i
\(130\) 0 0
\(131\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.500000 0.866025i 0.500000 0.866025i
\(136\) −0.500000 0.866025i −0.500000 0.866025i
\(137\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(138\) −0.866025 0.500000i −0.866025 0.500000i
\(139\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(140\) 0 0
\(141\) 1.00000 1.00000
\(142\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(143\) 0 0
\(144\) −0.500000 0.866025i −0.500000 0.866025i
\(145\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(146\) 1.00000i 1.00000i
\(147\) −0.866025 0.500000i −0.866025 0.500000i
\(148\) 0 0
\(149\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(150\) 0 0
\(151\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 1.00000i 1.00000i
\(154\) 0 0
\(155\) 1.00000i 1.00000i
\(156\) 0 0
\(157\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(158\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(159\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(160\) 0 0
\(161\) 0.866025 0.500000i 0.866025 0.500000i
\(162\) 1.00000i 1.00000i
\(163\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 1.00000 1.00000
\(169\) 0 0
\(170\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 1.00000i 1.00000i
\(175\) 0 0
\(176\) 0 0
\(177\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(178\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(179\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(185\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(186\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(187\) 0 0
\(188\) 0 0
\(189\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(190\) 0 0
\(191\) 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(193\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(194\) −0.866025 0.500000i −0.866025 0.500000i
\(195\) 0 0
\(196\) 0 0
\(197\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(198\) 0 0
\(199\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.866025 0.500000i −0.866025 0.500000i
\(204\) 0 0
\(205\) 0.500000 0.866025i 0.500000 0.866025i
\(206\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(207\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(208\) 0 0
\(209\) 0 0
\(210\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(211\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(212\) 0 0
\(213\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(214\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(215\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(216\) −1.00000 −1.00000
\(217\) −1.00000 −1.00000
\(218\) 1.00000i 1.00000i
\(219\) −0.866025 0.500000i −0.866025 0.500000i
\(220\) 0 0
\(221\) 0 0
\(222\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(223\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0.500000 0.866025i 0.500000 0.866025i
\(227\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(230\) 1.00000i 1.00000i
\(231\) 0 0
\(232\) 1.00000 1.00000
\(233\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(236\) 0 0
\(237\) 1.00000i 1.00000i
\(238\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0.500000 0.866025i 0.500000 0.866025i
\(241\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(242\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(243\) −0.866025 0.500000i −0.866025 0.500000i
\(244\) 0 0
\(245\) 1.00000i 1.00000i
\(246\) 1.00000i 1.00000i
\(247\) 0 0
\(248\) 0.866025 0.500000i 0.866025 0.500000i
\(249\) 0 0
\(250\) 0.500000 0.866025i 0.500000 0.866025i
\(251\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −0.866025 0.500000i −0.866025 0.500000i
\(255\) 0.866025 0.500000i 0.866025 0.500000i
\(256\) 0 0
\(257\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(258\) 1.00000 1.00000
\(259\) −0.500000 0.866025i −0.500000 0.866025i
\(260\) 0 0
\(261\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(262\) −0.500000 0.866025i −0.500000 0.866025i
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) −1.00000 −1.00000
\(266\) 0 0
\(267\) 1.00000 1.00000
\(268\) 0 0
\(269\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(270\) 0.866025 0.500000i 0.866025 0.500000i
\(271\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(272\) 1.00000i 1.00000i
\(273\) 0 0
\(274\) 1.00000 1.00000
\(275\) 0 0
\(276\) 0 0
\(277\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(278\) −0.866025 0.500000i −0.866025 0.500000i
\(279\) 1.00000 1.00000
\(280\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(281\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(283\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(288\) 0 0
\(289\) 0 0
\(290\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(291\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(292\) 0 0
\(293\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(294\) −0.500000 0.866025i −0.500000 0.866025i
\(295\) −1.00000 −1.00000
\(296\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(302\) 1.00000i 1.00000i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0.500000 0.866025i 0.500000 0.866025i
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 1.00000i 1.00000i
\(310\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(311\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(314\) 1.00000i 1.00000i
\(315\) 1.00000i 1.00000i
\(316\) 0 0
\(317\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(318\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(319\) 0 0
\(320\) −0.866025 0.500000i −0.866025 0.500000i
\(321\) 1.00000 1.00000
\(322\) 1.00000 1.00000
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −0.866025 0.500000i −0.866025 0.500000i
\(328\) −1.00000 −1.00000
\(329\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(330\) 0 0
\(331\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(332\) 0 0
\(333\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(334\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(335\) 0 0
\(336\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 0 0
\(339\) −0.500000 0.866025i −0.500000 0.866025i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000 1.00000
\(344\) 1.00000i 1.00000i
\(345\) −0.866025 0.500000i −0.866025 0.500000i
\(346\) 0 0
\(347\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(354\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(355\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(356\) 0 0
\(357\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(358\) 0 0
\(359\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(360\) −0.500000 0.866025i −0.500000 0.866025i
\(361\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(362\) 0 0
\(363\) 1.00000i 1.00000i
\(364\) 0 0
\(365\) 1.00000i 1.00000i
\(366\) 0 0
\(367\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(368\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(369\) −0.866025 0.500000i −0.866025 0.500000i
\(370\) −1.00000 −1.00000
\(371\) 1.00000i 1.00000i
\(372\) 0 0
\(373\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(374\) 0 0
\(375\) −0.500000 0.866025i −0.500000 0.866025i
\(376\) 0.500000 0.866025i 0.500000 0.866025i
\(377\) 0 0
\(378\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(379\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(380\) 0 0
\(381\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(382\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(383\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(384\) −1.00000 −1.00000
\(385\) 0 0
\(386\) 0 0
\(387\) 0.500000 0.866025i 0.500000 0.866025i
\(388\) 0 0
\(389\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(390\) 0 0
\(391\) −1.00000 −1.00000
\(392\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(393\) −1.00000 −1.00000
\(394\) 0.500000 0.866025i 0.500000 0.866025i
\(395\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(396\) 0 0
\(397\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(398\) 1.00000i 1.00000i
\(399\) 0 0
\(400\) 0 0
\(401\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.00000i 1.00000i
\(406\) −0.500000 0.866025i −0.500000 0.866025i
\(407\) 0 0
\(408\) −0.866025 0.500000i −0.866025 0.500000i
\(409\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(410\) 0.866025 0.500000i 0.866025 0.500000i
\(411\) 0.500000 0.866025i 0.500000 0.866025i
\(412\) 0 0
\(413\) 1.00000i 1.00000i
\(414\) −1.00000 −1.00000
\(415\) 0 0
\(416\) 0 0
\(417\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(418\) 0 0
\(419\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(423\) 0.866025 0.500000i 0.866025 0.500000i
\(424\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(425\) 0 0
\(426\) 1.00000i 1.00000i
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(431\) −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i \(0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(432\) −0.866025 0.500000i −0.866025 0.500000i
\(433\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(434\) −0.866025 0.500000i −0.866025 0.500000i
\(435\) 1.00000i 1.00000i
\(436\) 0 0
\(437\) 0 0
\(438\) −0.500000 0.866025i −0.500000 0.866025i
\(439\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −1.00000 −1.00000
\(442\) 0 0
\(443\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(446\) −0.866025 0.500000i −0.866025 0.500000i
\(447\) 0 0
\(448\) 0.500000 0.866025i 0.500000 0.866025i
\(449\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −0.866025 0.500000i −0.866025 0.500000i
\(454\) −1.00000 −1.00000
\(455\) 0 0
\(456\) 0 0
\(457\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(458\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(459\) −0.500000 0.866025i −0.500000 0.866025i
\(460\) 0 0
\(461\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(465\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(466\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(467\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 1.00000i 1.00000i
\(471\) −0.866025 0.500000i −0.866025 0.500000i
\(472\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(473\) 0 0
\(474\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(475\) 0 0
\(476\) 0 0
\(477\) 1.00000i 1.00000i
\(478\) 0 0
\(479\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.00000i 1.00000i
\(483\) 0.500000 0.866025i 0.500000 0.866025i
\(484\) 0 0
\(485\) −0.866025 0.500000i −0.866025 0.500000i
\(486\) −0.500000 0.866025i −0.500000 0.866025i
\(487\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0.500000 0.866025i 0.500000 0.866025i
\(491\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(494\) 0 0
\(495\) 0 0
\(496\) 1.00000 1.00000
\(497\) −0.866025 0.500000i −0.866025 0.500000i
\(498\) 0 0
\(499\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(502\) 0.500000 0.866025i 0.500000 0.866025i
\(503\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(504\) 0.866025 0.500000i 0.866025 0.500000i
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(510\) 1.00000 1.00000
\(511\) 1.00000 1.00000
\(512\) 1.00000i 1.00000i
\(513\) 0 0
\(514\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(515\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(516\) 0 0
\(517\) 0 0
\(518\) 1.00000i 1.00000i
\(519\) 0 0
\(520\) 0 0
\(521\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(522\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(523\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(528\) 0 0
\(529\) 0 0
\(530\) −0.866025 0.500000i −0.866025 0.500000i
\(531\) 1.00000i 1.00000i
\(532\) 0 0
\(533\) 0 0
\(534\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(535\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(536\) 0 0
\(537\) 0 0
\(538\) 1.00000 1.00000
\(539\) 0 0
\(540\) 0 0
\(541\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(542\) 0.866025 0.500000i 0.866025 0.500000i
\(543\) 0 0
\(544\) 0 0
\(545\) 1.00000i 1.00000i
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 1.00000i 1.00000i
\(553\) −0.500000 0.866025i −0.500000 0.866025i
\(554\) 1.00000i 1.00000i
\(555\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(556\) 0 0
\(557\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(558\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(559\) 0 0
\(560\) 1.00000i 1.00000i
\(561\) 0 0
\(562\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(563\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(564\) 0 0
\(565\) 0.500000 0.866025i 0.500000 0.866025i
\(566\) 0 0
\(567\) 1.00000 1.00000
\(568\) 1.00000 1.00000
\(569\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(570\) 0 0
\(571\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(572\) 0 0
\(573\) 2.00000 2.00000
\(574\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(575\) 0 0
\(576\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(577\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) −1.00000 −1.00000
\(583\) 0 0
\(584\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(585\) 0 0
\(586\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(587\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −0.866025 0.500000i −0.866025 0.500000i
\(591\) −0.500000 0.866025i −0.500000 0.866025i
\(592\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(593\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(594\) 0 0
\(595\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(596\) 0 0
\(597\) −0.866025 0.500000i −0.866025 0.500000i
\(598\) 0 0
\(599\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(600\) 0 0
\(601\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(603\) 0 0
\(604\) 0 0
\(605\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(606\) 0 0
\(607\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(608\) 0 0
\(609\) −1.00000 −1.00000
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(614\) 0 0
\(615\) 1.00000i 1.00000i
\(616\) 0 0
\(617\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(618\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(619\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) 0 0
\(621\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(622\) −1.00000 −1.00000
\(623\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(624\) 0 0
\(625\) 0.500000 0.866025i 0.500000 0.866025i
\(626\) 0.866025 0.500000i 0.866025 0.500000i
\(627\) 0 0
\(628\) 0 0
\(629\) 1.00000i 1.00000i
\(630\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(631\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(632\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(633\) 0.866025 0.500000i 0.866025 0.500000i
\(634\) −0.500000 0.866025i −0.500000 0.866025i
\(635\) −0.866025 0.500000i −0.866025 0.500000i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(640\) −0.500000 0.866025i −0.500000 0.866025i
\(641\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(642\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(643\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(644\) 0 0
\(645\) 1.00000 1.00000
\(646\) 0 0
\(647\) 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i \(-0.166667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(648\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(649\) 0 0
\(650\) 0 0
\(651\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(652\) 0 0
\(653\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(654\) −0.500000 0.866025i −0.500000 0.866025i
\(655\) −0.500000 0.866025i −0.500000 0.866025i
\(656\) −0.866025 0.500000i −0.866025 0.500000i
\(657\) −1.00000 −1.00000
\(658\) −1.00000 −1.00000
\(659\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(660\) 0 0
\(661\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 1.00000i 1.00000i
\(667\) 0.500000 0.866025i 0.500000 0.866025i
\(668\) 0 0
\(669\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(678\) 1.00000i 1.00000i
\(679\) 0.500000 0.866025i 0.500000 0.866025i
\(680\) 1.00000i 1.00000i
\(681\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(682\) 0 0
\(683\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 1.00000 1.00000
\(686\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(687\) 1.00000i 1.00000i
\(688\) 0.500000 0.866025i 0.500000 0.866025i
\(689\) 0 0
\(690\) −0.500000 0.866025i −0.500000 0.866025i
\(691\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(692\) 0 0
\(693\) 0 0
\(694\) −1.00000 −1.00000
\(695\) −0.866025 0.500000i −0.866025 0.500000i
\(696\) 0.866025 0.500000i 0.866025 0.500000i
\(697\) −0.500000 0.866025i −0.500000 0.866025i
\(698\) −0.866025 0.500000i −0.866025 0.500000i
\(699\) 1.00000 1.00000
\(700\) 0 0
\(701\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(710\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(711\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(712\) 0.500000 0.866025i 0.500000 0.866025i
\(713\) 1.00000i 1.00000i
\(714\) 1.00000i 1.00000i
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(719\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(720\) 1.00000i 1.00000i
\(721\) −0.500000 0.866025i −0.500000 0.866025i
\(722\) 1.00000i 1.00000i
\(723\) −0.866025 0.500000i −0.866025 0.500000i
\(724\) 0 0
\(725\) 0 0
\(726\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −1.00000 −1.00000
\(730\) 0.500000 0.866025i 0.500000 0.866025i
\(731\) 0.866025 0.500000i 0.866025 0.500000i
\(732\) 0 0
\(733\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) −0.500000 0.866025i −0.500000 0.866025i
\(736\) 0 0
\(737\) 0 0
\(738\) −0.500000 0.866025i −0.500000 0.866025i
\(739\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0.500000 0.866025i 0.500000 0.866025i
\(743\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(744\) 0.500000 0.866025i 0.500000 0.866025i
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(750\) 1.00000i 1.00000i
\(751\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(752\) 0.866025 0.500000i 0.866025 0.500000i
\(753\) −0.500000 0.866025i −0.500000 0.866025i
\(754\) 0 0
\(755\) 1.00000i 1.00000i
\(756\) 0 0
\(757\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(758\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) −1.00000 −1.00000
\(763\) 1.00000 1.00000
\(764\) 0 0
\(765\) 0.500000 0.866025i 0.500000 0.866025i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(770\) 0 0
\(771\) 1.00000 1.00000
\(772\) 0 0
\(773\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(774\) 0.866025 0.500000i 0.866025 0.500000i
\(775\) 0 0
\(776\) 1.00000i 1.00000i
\(777\) −0.866025 0.500000i −0.866025 0.500000i
\(778\) 1.00000 1.00000
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −0.866025 0.500000i −0.866025 0.500000i
\(783\) 1.00000 1.00000
\(784\) −1.00000 −1.00000
\(785\) 1.00000i 1.00000i
\(786\) −0.866025 0.500000i −0.866025 0.500000i
\(787\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) −1.00000 −1.00000
\(791\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(796\) 0 0
\(797\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(798\) 0 0
\(799\) 1.00000 1.00000
\(800\) 0 0
\(801\) 0.866025 0.500000i 0.866025 0.500000i
\(802\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(803\) 0 0
\(804\) 0 0
\(805\) 1.00000 1.00000
\(806\) 0 0
\(807\) 0.500000 0.866025i 0.500000 0.866025i
\(808\) 0 0
\(809\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(810\) 0.500000 0.866025i 0.500000 0.866025i
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 1.00000i 1.00000i
\(814\) 0 0
\(815\) 0 0
\(816\) −0.500000 0.866025i −0.500000 0.866025i
\(817\) 0 0
\(818\) 1.00000i 1.00000i
\(819\) 0 0
\(820\) 0 0
\(821\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(822\) 0.866025 0.500000i 0.866025 0.500000i
\(823\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(825\) 0 0
\(826\) 0.500000 0.866025i 0.500000 0.866025i
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(830\) 0 0
\(831\) −0.866025 0.500000i −0.866025 0.500000i
\(832\) 0 0
\(833\) −0.866025 0.500000i −0.866025 0.500000i
\(834\) −1.00000 −1.00000
\(835\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(836\) 0 0
\(837\) 0.866025 0.500000i 0.866025 0.500000i
\(838\) 0.500000 0.866025i 0.500000 0.866025i
\(839\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(840\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(841\) 0 0
\(842\) 0 0
\(843\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(844\) 0 0
\(845\) 0 0
\(846\) 1.00000 1.00000
\(847\) −0.500000 0.866025i −0.500000 0.866025i
\(848\) 1.00000i 1.00000i
\(849\) 0 0
\(850\) 0 0
\(851\) 0.866025 0.500000i 0.866025 0.500000i
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.500000 0.866025i 0.500000 0.866025i
\(857\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(858\) 0 0
\(859\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(860\) 0 0
\(861\) 1.00000 1.00000
\(862\) −2.00000 −2.00000
\(863\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(871\) 0 0
\(872\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(873\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(874\) 0 0
\(875\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(876\) 0 0
\(877\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(878\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(879\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(880\) 0 0
\(881\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(882\) −0.866025 0.500000i −0.866025 0.500000i
\(883\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(884\) 0 0
\(885\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(886\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(887\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(888\) 1.00000 1.00000
\(889\) 0.500000 0.866025i 0.500000 0.866025i
\(890\) 1.00000i 1.00000i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0.866025 0.500000i 0.866025 0.500000i
\(897\) 0 0
\(898\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(899\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(900\) 0 0
\(901\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(902\) 0 0
\(903\) 1.00000i 1.00000i
\(904\) −1.00000 −1.00000
\(905\) 0 0
\(906\) −0.500000 0.866025i −0.500000 0.866025i
\(907\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0.866025 0.500000i 0.866025 0.500000i
\(915\) 0 0
\(916\) 0 0
\(917\) 0.866025 0.500000i 0.866025 0.500000i
\(918\) 1.00000i 1.00000i
\(919\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(920\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(921\) 0 0
\(922\) 0.500000 0.866025i 0.500000 0.866025i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(928\) 0 0
\(929\) 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(930\) 1.00000i 1.00000i
\(931\) 0 0
\(932\) 0 0
\(933\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(934\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 1.00000i 1.00000i
\(940\) 0 0
\(941\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(942\) −0.500000 0.866025i −0.500000 0.866025i
\(943\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(944\) 1.00000i 1.00000i
\(945\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(946\) 0 0
\(947\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −1.00000 −1.00000
\(952\) 1.00000 1.00000
\(953\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(954\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(955\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.00000i 1.00000i
\(960\) −1.00000 −1.00000
\(961\) 0 0
\(962\) 0 0
\(963\) 0.866025 0.500000i 0.866025 0.500000i
\(964\) 0 0
\(965\) 0 0
\(966\) 0.866025 0.500000i 0.866025 0.500000i
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(969\) 0 0
\(970\) −0.500000 0.866025i −0.500000 0.866025i
\(971\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(972\) 0 0
\(973\) 0.500000 0.866025i 0.500000 0.866025i
\(974\) 1.00000i 1.00000i
\(975\) 0 0
\(976\) 0 0
\(977\) 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i \(-0.166667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −1.00000 −1.00000
\(982\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(983\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(984\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(985\) 0.500000 0.866025i 0.500000 0.866025i
\(986\) 1.00000i 1.00000i
\(987\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(988\) 0 0
\(989\) −0.866025 0.500000i −0.866025 0.500000i
\(990\) 0 0
\(991\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −0.500000 0.866025i −0.500000 0.866025i
\(995\) 1.00000i 1.00000i
\(996\) 0 0
\(997\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(998\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(999\) 0.866025 + 0.500000i 0.866025 + 0.500000i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3549.1.bk.d.170.2 4
3.2 odd 2 inner 3549.1.bk.d.170.1 4
7.4 even 3 inner 3549.1.bk.d.1691.1 4
13.2 odd 12 3549.1.x.d.485.2 4
13.3 even 3 273.1.bm.b.191.1 yes 4
13.4 even 6 3549.1.s.b.653.2 4
13.5 odd 4 3549.1.w.e.506.2 4
13.6 odd 12 3549.1.bp.b.23.1 4
13.7 odd 12 3549.1.bp.d.23.1 4
13.8 odd 4 3549.1.w.c.506.2 4
13.9 even 3 273.1.s.b.107.1 yes 4
13.10 even 6 3549.1.bm.c.191.2 4
13.11 odd 12 3549.1.x.b.485.2 4
13.12 even 2 3549.1.bk.c.170.1 4
21.11 odd 6 inner 3549.1.bk.d.1691.2 4
39.2 even 12 3549.1.x.b.485.1 4
39.5 even 4 3549.1.w.c.506.1 4
39.8 even 4 3549.1.w.e.506.1 4
39.11 even 12 3549.1.x.d.485.1 4
39.17 odd 6 3549.1.s.b.653.1 4
39.20 even 12 3549.1.bp.b.23.2 4
39.23 odd 6 3549.1.bm.c.191.1 4
39.29 odd 6 273.1.bm.b.191.2 yes 4
39.32 even 12 3549.1.bp.d.23.2 4
39.35 odd 6 273.1.s.b.107.2 yes 4
39.38 odd 2 3549.1.bk.c.170.2 4
91.3 odd 6 1911.1.s.b.1439.1 4
91.4 even 6 3549.1.bm.c.2174.1 4
91.9 even 3 1911.1.be.c.1667.1 4
91.11 odd 12 3549.1.bp.d.2006.2 4
91.16 even 3 1911.1.be.c.932.2 4
91.18 odd 12 3549.1.w.e.2027.1 4
91.25 even 6 3549.1.bk.c.1691.2 4
91.32 odd 12 3549.1.x.d.1544.2 4
91.46 odd 12 3549.1.x.b.1544.2 4
91.48 odd 6 1911.1.s.b.1745.1 4
91.55 odd 6 1911.1.bm.b.1010.1 4
91.60 odd 12 3549.1.w.c.2027.1 4
91.61 odd 6 1911.1.be.d.1667.1 4
91.67 odd 12 3549.1.bp.b.2006.2 4
91.68 odd 6 1911.1.be.d.932.2 4
91.74 even 3 273.1.bm.b.263.2 yes 4
91.81 even 3 273.1.s.b.74.1 4
91.87 odd 6 1911.1.bm.b.263.2 4
91.88 even 6 3549.1.s.b.1712.2 4
273.11 even 12 3549.1.bp.b.2006.1 4
273.32 even 12 3549.1.x.b.1544.1 4
273.68 even 6 1911.1.be.d.932.1 4
273.74 odd 6 273.1.bm.b.263.1 yes 4
273.95 odd 6 3549.1.bm.c.2174.2 4
273.107 odd 6 1911.1.be.c.932.1 4
273.116 odd 6 3549.1.bk.c.1691.1 4
273.137 even 12 3549.1.x.d.1544.1 4
273.146 even 6 1911.1.bm.b.1010.2 4
273.152 even 6 1911.1.be.d.1667.2 4
273.158 even 12 3549.1.bp.d.2006.1 4
273.179 odd 6 3549.1.s.b.1712.1 4
273.185 even 6 1911.1.s.b.1439.2 4
273.191 odd 6 1911.1.be.c.1667.2 4
273.200 even 12 3549.1.w.c.2027.2 4
273.230 even 6 1911.1.s.b.1745.2 4
273.242 even 12 3549.1.w.e.2027.2 4
273.263 odd 6 273.1.s.b.74.2 yes 4
273.269 even 6 1911.1.bm.b.263.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.1.s.b.74.1 4 91.81 even 3
273.1.s.b.74.2 yes 4 273.263 odd 6
273.1.s.b.107.1 yes 4 13.9 even 3
273.1.s.b.107.2 yes 4 39.35 odd 6
273.1.bm.b.191.1 yes 4 13.3 even 3
273.1.bm.b.191.2 yes 4 39.29 odd 6
273.1.bm.b.263.1 yes 4 273.74 odd 6
273.1.bm.b.263.2 yes 4 91.74 even 3
1911.1.s.b.1439.1 4 91.3 odd 6
1911.1.s.b.1439.2 4 273.185 even 6
1911.1.s.b.1745.1 4 91.48 odd 6
1911.1.s.b.1745.2 4 273.230 even 6
1911.1.be.c.932.1 4 273.107 odd 6
1911.1.be.c.932.2 4 91.16 even 3
1911.1.be.c.1667.1 4 91.9 even 3
1911.1.be.c.1667.2 4 273.191 odd 6
1911.1.be.d.932.1 4 273.68 even 6
1911.1.be.d.932.2 4 91.68 odd 6
1911.1.be.d.1667.1 4 91.61 odd 6
1911.1.be.d.1667.2 4 273.152 even 6
1911.1.bm.b.263.1 4 273.269 even 6
1911.1.bm.b.263.2 4 91.87 odd 6
1911.1.bm.b.1010.1 4 91.55 odd 6
1911.1.bm.b.1010.2 4 273.146 even 6
3549.1.s.b.653.1 4 39.17 odd 6
3549.1.s.b.653.2 4 13.4 even 6
3549.1.s.b.1712.1 4 273.179 odd 6
3549.1.s.b.1712.2 4 91.88 even 6
3549.1.w.c.506.1 4 39.5 even 4
3549.1.w.c.506.2 4 13.8 odd 4
3549.1.w.c.2027.1 4 91.60 odd 12
3549.1.w.c.2027.2 4 273.200 even 12
3549.1.w.e.506.1 4 39.8 even 4
3549.1.w.e.506.2 4 13.5 odd 4
3549.1.w.e.2027.1 4 91.18 odd 12
3549.1.w.e.2027.2 4 273.242 even 12
3549.1.x.b.485.1 4 39.2 even 12
3549.1.x.b.485.2 4 13.11 odd 12
3549.1.x.b.1544.1 4 273.32 even 12
3549.1.x.b.1544.2 4 91.46 odd 12
3549.1.x.d.485.1 4 39.11 even 12
3549.1.x.d.485.2 4 13.2 odd 12
3549.1.x.d.1544.1 4 273.137 even 12
3549.1.x.d.1544.2 4 91.32 odd 12
3549.1.bk.c.170.1 4 13.12 even 2
3549.1.bk.c.170.2 4 39.38 odd 2
3549.1.bk.c.1691.1 4 273.116 odd 6
3549.1.bk.c.1691.2 4 91.25 even 6
3549.1.bk.d.170.1 4 3.2 odd 2 inner
3549.1.bk.d.170.2 4 1.1 even 1 trivial
3549.1.bk.d.1691.1 4 7.4 even 3 inner
3549.1.bk.d.1691.2 4 21.11 odd 6 inner
3549.1.bm.c.191.1 4 39.23 odd 6
3549.1.bm.c.191.2 4 13.10 even 6
3549.1.bm.c.2174.1 4 91.4 even 6
3549.1.bm.c.2174.2 4 273.95 odd 6
3549.1.bp.b.23.1 4 13.6 odd 12
3549.1.bp.b.23.2 4 39.20 even 12
3549.1.bp.b.2006.1 4 273.11 even 12
3549.1.bp.b.2006.2 4 91.67 odd 12
3549.1.bp.d.23.1 4 13.7 odd 12
3549.1.bp.d.23.2 4 39.32 even 12
3549.1.bp.d.2006.1 4 273.158 even 12
3549.1.bp.d.2006.2 4 91.11 odd 12