Properties

Label 3549.1.bk.d.170.2
Level 35493549
Weight 11
Character 3549.170
Analytic conductor 1.7711.771
Analytic rank 00
Dimension 44
Projective image A4A_{4}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3549,1,Mod(170,3549)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3549, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3549.170");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3549=37132 3549 = 3 \cdot 7 \cdot 13^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3549.bk (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.771181729831.77118172983
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 273)
Projective image: A4A_{4}
Projective field: Galois closure of 4.0.74529.1

Embedding invariants

Embedding label 170.2
Root 0.866025+0.500000i0.866025 + 0.500000i of defining polynomial
Character χ\chi == 3549.170
Dual form 3549.1.bk.d.1691.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.866025+0.500000i)q2+(0.8660250.500000i)q3+(0.866025+0.500000i)q5+1.00000q6+(0.500000+0.866025i)q71.00000iq8+(0.5000000.866025i)q9+(0.500000+0.866025i)q10+(0.866025+0.500000i)q14+1.00000q15+(0.5000000.866025i)q16+(0.8660250.500000i)q17+(0.8660250.500000i)q18+1.00000iq21+(0.8660250.500000i)q23+(0.5000000.866025i)q241.00000iq27+1.00000iq29+(0.866025+0.500000i)q30+(0.500000+0.866025i)q31+1.00000q34+(0.866025+0.500000i)q35+(0.500000+0.866025i)q37+(0.5000000.866025i)q401.00000iq41+(0.500000+0.866025i)q42+1.00000q43+(0.8660250.500000i)q45+(0.5000000.866025i)q46+(0.866025+0.500000i)q471.00000iq48+(0.5000000.866025i)q49+(0.5000000.866025i)q51+(0.866025+0.500000i)q53+(0.5000000.866025i)q54+(0.866025+0.500000i)q56+(0.500000+0.866025i)q58+(0.866025+0.500000i)q59+1.00000iq62+(0.500000+0.866025i)q631.00000q641.00000q691.00000q70+1.00000iq71+(0.8660250.500000i)q72+(0.5000000.866025i)q73+(0.866025+0.500000i)q74+(0.500000+0.866025i)q79+(0.8660250.500000i)q80+(0.5000000.866025i)q81+(0.5000000.866025i)q82+1.00000q85+(0.866025+0.500000i)q86+(0.500000+0.866025i)q87+(0.866025+0.500000i)q89+1.00000q90+(0.866025+0.500000i)q93+(0.500000+0.866025i)q941.00000q971.00000iq98+O(q100)q+(0.866025 + 0.500000i) q^{2} +(0.866025 - 0.500000i) q^{3} +(0.866025 + 0.500000i) q^{5} +1.00000 q^{6} +(-0.500000 + 0.866025i) q^{7} -1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(0.500000 + 0.866025i) q^{10} +(-0.866025 + 0.500000i) q^{14} +1.00000 q^{15} +(0.500000 - 0.866025i) q^{16} +(0.866025 - 0.500000i) q^{17} +(0.866025 - 0.500000i) q^{18} +1.00000i q^{21} +(-0.866025 - 0.500000i) q^{23} +(-0.500000 - 0.866025i) q^{24} -1.00000i q^{27} +1.00000i q^{29} +(0.866025 + 0.500000i) q^{30} +(0.500000 + 0.866025i) q^{31} +1.00000 q^{34} +(-0.866025 + 0.500000i) q^{35} +(-0.500000 + 0.866025i) q^{37} +(0.500000 - 0.866025i) q^{40} -1.00000i q^{41} +(-0.500000 + 0.866025i) q^{42} +1.00000 q^{43} +(0.866025 - 0.500000i) q^{45} +(-0.500000 - 0.866025i) q^{46} +(0.866025 + 0.500000i) q^{47} -1.00000i q^{48} +(-0.500000 - 0.866025i) q^{49} +(0.500000 - 0.866025i) q^{51} +(-0.866025 + 0.500000i) q^{53} +(0.500000 - 0.866025i) q^{54} +(0.866025 + 0.500000i) q^{56} +(-0.500000 + 0.866025i) q^{58} +(-0.866025 + 0.500000i) q^{59} +1.00000i q^{62} +(0.500000 + 0.866025i) q^{63} -1.00000 q^{64} -1.00000 q^{69} -1.00000 q^{70} +1.00000i q^{71} +(-0.866025 - 0.500000i) q^{72} +(-0.500000 - 0.866025i) q^{73} +(-0.866025 + 0.500000i) q^{74} +(-0.500000 + 0.866025i) q^{79} +(0.866025 - 0.500000i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(0.500000 - 0.866025i) q^{82} +1.00000 q^{85} +(0.866025 + 0.500000i) q^{86} +(0.500000 + 0.866025i) q^{87} +(0.866025 + 0.500000i) q^{89} +1.00000 q^{90} +(0.866025 + 0.500000i) q^{93} +(0.500000 + 0.866025i) q^{94} -1.00000 q^{97} -1.00000i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q62q7+2q9+2q10+4q15+2q162q24+2q31+4q342q37+2q402q42+4q432q462q49+2q51+2q542q58+2q63+4q97+O(q100) 4 q + 4 q^{6} - 2 q^{7} + 2 q^{9} + 2 q^{10} + 4 q^{15} + 2 q^{16} - 2 q^{24} + 2 q^{31} + 4 q^{34} - 2 q^{37} + 2 q^{40} - 2 q^{42} + 4 q^{43} - 2 q^{46} - 2 q^{49} + 2 q^{51} + 2 q^{54} - 2 q^{58} + 2 q^{63}+ \cdots - 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3549Z)×\left(\mathbb{Z}/3549\mathbb{Z}\right)^\times.

nn 11841184 15221522 33823382
χ(n)\chi(n) 1-1 e(13)e\left(\frac{1}{3}\right) 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
33 0.866025 0.500000i 0.866025 0.500000i
44 0 0
55 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
66 1.00000 1.00000
77 −0.500000 + 0.866025i −0.500000 + 0.866025i
88 1.00000i 1.00000i
99 0.500000 0.866025i 0.500000 0.866025i
1010 0.500000 + 0.866025i 0.500000 + 0.866025i
1111 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1212 0 0
1313 0 0
1414 −0.866025 + 0.500000i −0.866025 + 0.500000i
1515 1.00000 1.00000
1616 0.500000 0.866025i 0.500000 0.866025i
1717 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
1818 0.866025 0.500000i 0.866025 0.500000i
1919 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
2020 0 0
2121 1.00000i 1.00000i
2222 0 0
2323 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
2424 −0.500000 0.866025i −0.500000 0.866025i
2525 0 0
2626 0 0
2727 1.00000i 1.00000i
2828 0 0
2929 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
3030 0.866025 + 0.500000i 0.866025 + 0.500000i
3131 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
3232 0 0
3333 0 0
3434 1.00000 1.00000
3535 −0.866025 + 0.500000i −0.866025 + 0.500000i
3636 0 0
3737 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
3838 0 0
3939 0 0
4040 0.500000 0.866025i 0.500000 0.866025i
4141 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
4242 −0.500000 + 0.866025i −0.500000 + 0.866025i
4343 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4444 0 0
4545 0.866025 0.500000i 0.866025 0.500000i
4646 −0.500000 0.866025i −0.500000 0.866025i
4747 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
4848 1.00000i 1.00000i
4949 −0.500000 0.866025i −0.500000 0.866025i
5050 0 0
5151 0.500000 0.866025i 0.500000 0.866025i
5252 0 0
5353 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
5454 0.500000 0.866025i 0.500000 0.866025i
5555 0 0
5656 0.866025 + 0.500000i 0.866025 + 0.500000i
5757 0 0
5858 −0.500000 + 0.866025i −0.500000 + 0.866025i
5959 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
6060 0 0
6161 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
6262 1.00000i 1.00000i
6363 0.500000 + 0.866025i 0.500000 + 0.866025i
6464 −1.00000 −1.00000
6565 0 0
6666 0 0
6767 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6868 0 0
6969 −1.00000 −1.00000
7070 −1.00000 −1.00000
7171 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
7272 −0.866025 0.500000i −0.866025 0.500000i
7373 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
7474 −0.866025 + 0.500000i −0.866025 + 0.500000i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
8080 0.866025 0.500000i 0.866025 0.500000i
8181 −0.500000 0.866025i −0.500000 0.866025i
8282 0.500000 0.866025i 0.500000 0.866025i
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 1.00000 1.00000
8686 0.866025 + 0.500000i 0.866025 + 0.500000i
8787 0.500000 + 0.866025i 0.500000 + 0.866025i
8888 0 0
8989 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
9090 1.00000 1.00000
9191 0 0
9292 0 0
9393 0.866025 + 0.500000i 0.866025 + 0.500000i
9494 0.500000 + 0.866025i 0.500000 + 0.866025i
9595 0 0
9696 0 0
9797 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9898 1.00000i 1.00000i
9999 0 0
100100 0 0
101101 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
102102 0.866025 0.500000i 0.866025 0.500000i
103103 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
104104 0 0
105105 −0.500000 + 0.866025i −0.500000 + 0.866025i
106106 −1.00000 −1.00000
107107 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
110110 0 0
111111 1.00000i 1.00000i
112112 0.500000 + 0.866025i 0.500000 + 0.866025i
113113 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
114114 0 0
115115 −0.500000 0.866025i −0.500000 0.866025i
116116 0 0
117117 0 0
118118 −1.00000 −1.00000
119119 1.00000i 1.00000i
120120 1.00000i 1.00000i
121121 −0.500000 + 0.866025i −0.500000 + 0.866025i
122122 0 0
123123 −0.500000 0.866025i −0.500000 0.866025i
124124 0 0
125125 1.00000i 1.00000i
126126 1.00000i 1.00000i
127127 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
128128 −0.866025 0.500000i −0.866025 0.500000i
129129 0.866025 0.500000i 0.866025 0.500000i
130130 0 0
131131 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
132132 0 0
133133 0 0
134134 0 0
135135 0.500000 0.866025i 0.500000 0.866025i
136136 −0.500000 0.866025i −0.500000 0.866025i
137137 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
138138 −0.866025 0.500000i −0.866025 0.500000i
139139 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
140140 0 0
141141 1.00000 1.00000
142142 −0.500000 + 0.866025i −0.500000 + 0.866025i
143143 0 0
144144 −0.500000 0.866025i −0.500000 0.866025i
145145 −0.500000 + 0.866025i −0.500000 + 0.866025i
146146 1.00000i 1.00000i
147147 −0.866025 0.500000i −0.866025 0.500000i
148148 0 0
149149 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 0 0
151151 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
152152 0 0
153153 1.00000i 1.00000i
154154 0 0
155155 1.00000i 1.00000i
156156 0 0
157157 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
158158 −0.866025 + 0.500000i −0.866025 + 0.500000i
159159 −0.500000 + 0.866025i −0.500000 + 0.866025i
160160 0 0
161161 0.866025 0.500000i 0.866025 0.500000i
162162 1.00000i 1.00000i
163163 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
164164 0 0
165165 0 0
166166 0 0
167167 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
168168 1.00000 1.00000
169169 0 0
170170 0.866025 + 0.500000i 0.866025 + 0.500000i
171171 0 0
172172 0 0
173173 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
174174 1.00000i 1.00000i
175175 0 0
176176 0 0
177177 −0.500000 + 0.866025i −0.500000 + 0.866025i
178178 0.500000 + 0.866025i 0.500000 + 0.866025i
179179 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
180180 0 0
181181 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
182182 0 0
183183 0 0
184184 −0.500000 + 0.866025i −0.500000 + 0.866025i
185185 −0.866025 + 0.500000i −0.866025 + 0.500000i
186186 0.500000 + 0.866025i 0.500000 + 0.866025i
187187 0 0
188188 0 0
189189 0.866025 + 0.500000i 0.866025 + 0.500000i
190190 0 0
191191 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
192192 −0.866025 + 0.500000i −0.866025 + 0.500000i
193193 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
194194 −0.866025 0.500000i −0.866025 0.500000i
195195 0 0
196196 0 0
197197 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
198198 0 0
199199 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
200200 0 0
201201 0 0
202202 0 0
203203 −0.866025 0.500000i −0.866025 0.500000i
204204 0 0
205205 0.500000 0.866025i 0.500000 0.866025i
206206 −0.866025 + 0.500000i −0.866025 + 0.500000i
207207 −0.866025 + 0.500000i −0.866025 + 0.500000i
208208 0 0
209209 0 0
210210 −0.866025 + 0.500000i −0.866025 + 0.500000i
211211 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
212212 0 0
213213 0.500000 + 0.866025i 0.500000 + 0.866025i
214214 0.500000 + 0.866025i 0.500000 + 0.866025i
215215 0.866025 + 0.500000i 0.866025 + 0.500000i
216216 −1.00000 −1.00000
217217 −1.00000 −1.00000
218218 1.00000i 1.00000i
219219 −0.866025 0.500000i −0.866025 0.500000i
220220 0 0
221221 0 0
222222 −0.500000 + 0.866025i −0.500000 + 0.866025i
223223 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
224224 0 0
225225 0 0
226226 0.500000 0.866025i 0.500000 0.866025i
227227 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
230230 1.00000i 1.00000i
231231 0 0
232232 1.00000 1.00000
233233 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 0.500000 + 0.866025i 0.500000 + 0.866025i
236236 0 0
237237 1.00000i 1.00000i
238238 −0.500000 + 0.866025i −0.500000 + 0.866025i
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0.500000 0.866025i 0.500000 0.866025i
241241 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
242242 −0.866025 + 0.500000i −0.866025 + 0.500000i
243243 −0.866025 0.500000i −0.866025 0.500000i
244244 0 0
245245 1.00000i 1.00000i
246246 1.00000i 1.00000i
247247 0 0
248248 0.866025 0.500000i 0.866025 0.500000i
249249 0 0
250250 0.500000 0.866025i 0.500000 0.866025i
251251 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
252252 0 0
253253 0 0
254254 −0.866025 0.500000i −0.866025 0.500000i
255255 0.866025 0.500000i 0.866025 0.500000i
256256 0 0
257257 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
258258 1.00000 1.00000
259259 −0.500000 0.866025i −0.500000 0.866025i
260260 0 0
261261 0.866025 + 0.500000i 0.866025 + 0.500000i
262262 −0.500000 0.866025i −0.500000 0.866025i
263263 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
264264 0 0
265265 −1.00000 −1.00000
266266 0 0
267267 1.00000 1.00000
268268 0 0
269269 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
270270 0.866025 0.500000i 0.866025 0.500000i
271271 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
272272 1.00000i 1.00000i
273273 0 0
274274 1.00000 1.00000
275275 0 0
276276 0 0
277277 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
278278 −0.866025 0.500000i −0.866025 0.500000i
279279 1.00000 1.00000
280280 0.500000 + 0.866025i 0.500000 + 0.866025i
281281 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
282282 0.866025 + 0.500000i 0.866025 + 0.500000i
283283 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
284284 0 0
285285 0 0
286286 0 0
287287 0.866025 + 0.500000i 0.866025 + 0.500000i
288288 0 0
289289 0 0
290290 −0.866025 + 0.500000i −0.866025 + 0.500000i
291291 −0.866025 + 0.500000i −0.866025 + 0.500000i
292292 0 0
293293 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
294294 −0.500000 0.866025i −0.500000 0.866025i
295295 −1.00000 −1.00000
296296 0.866025 + 0.500000i 0.866025 + 0.500000i
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 −0.500000 + 0.866025i −0.500000 + 0.866025i
302302 1.00000i 1.00000i
303303 0 0
304304 0 0
305305 0 0
306306 0.500000 0.866025i 0.500000 0.866025i
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 1.00000i 1.00000i
310310 −0.500000 + 0.866025i −0.500000 + 0.866025i
311311 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
314314 1.00000i 1.00000i
315315 1.00000i 1.00000i
316316 0 0
317317 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
318318 −0.866025 + 0.500000i −0.866025 + 0.500000i
319319 0 0
320320 −0.866025 0.500000i −0.866025 0.500000i
321321 1.00000 1.00000
322322 1.00000 1.00000
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 −0.866025 0.500000i −0.866025 0.500000i
328328 −1.00000 −1.00000
329329 −0.866025 + 0.500000i −0.866025 + 0.500000i
330330 0 0
331331 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
332332 0 0
333333 0.500000 + 0.866025i 0.500000 + 0.866025i
334334 −0.500000 + 0.866025i −0.500000 + 0.866025i
335335 0 0
336336 0.866025 + 0.500000i 0.866025 + 0.500000i
337337 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
338338 0 0
339339 −0.500000 0.866025i −0.500000 0.866025i
340340 0 0
341341 0 0
342342 0 0
343343 1.00000 1.00000
344344 1.00000i 1.00000i
345345 −0.866025 0.500000i −0.866025 0.500000i
346346 0 0
347347 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
354354 −0.866025 + 0.500000i −0.866025 + 0.500000i
355355 −0.500000 + 0.866025i −0.500000 + 0.866025i
356356 0 0
357357 0.500000 + 0.866025i 0.500000 + 0.866025i
358358 0 0
359359 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
360360 −0.500000 0.866025i −0.500000 0.866025i
361361 0.500000 + 0.866025i 0.500000 + 0.866025i
362362 0 0
363363 1.00000i 1.00000i
364364 0 0
365365 1.00000i 1.00000i
366366 0 0
367367 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
368368 −0.866025 + 0.500000i −0.866025 + 0.500000i
369369 −0.866025 0.500000i −0.866025 0.500000i
370370 −1.00000 −1.00000
371371 1.00000i 1.00000i
372372 0 0
373373 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
374374 0 0
375375 −0.500000 0.866025i −0.500000 0.866025i
376376 0.500000 0.866025i 0.500000 0.866025i
377377 0 0
378378 0.500000 + 0.866025i 0.500000 + 0.866025i
379379 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
380380 0 0
381381 −0.866025 + 0.500000i −0.866025 + 0.500000i
382382 1.00000 + 1.73205i 1.00000 + 1.73205i
383383 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
384384 −1.00000 −1.00000
385385 0 0
386386 0 0
387387 0.500000 0.866025i 0.500000 0.866025i
388388 0 0
389389 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
390390 0 0
391391 −1.00000 −1.00000
392392 −0.866025 + 0.500000i −0.866025 + 0.500000i
393393 −1.00000 −1.00000
394394 0.500000 0.866025i 0.500000 0.866025i
395395 −0.866025 + 0.500000i −0.866025 + 0.500000i
396396 0 0
397397 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
398398 1.00000i 1.00000i
399399 0 0
400400 0 0
401401 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
402402 0 0
403403 0 0
404404 0 0
405405 1.00000i 1.00000i
406406 −0.500000 0.866025i −0.500000 0.866025i
407407 0 0
408408 −0.866025 0.500000i −0.866025 0.500000i
409409 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
410410 0.866025 0.500000i 0.866025 0.500000i
411411 0.500000 0.866025i 0.500000 0.866025i
412412 0 0
413413 1.00000i 1.00000i
414414 −1.00000 −1.00000
415415 0 0
416416 0 0
417417 −0.866025 + 0.500000i −0.866025 + 0.500000i
418418 0 0
419419 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
420420 0 0
421421 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
422422 0.866025 + 0.500000i 0.866025 + 0.500000i
423423 0.866025 0.500000i 0.866025 0.500000i
424424 0.500000 + 0.866025i 0.500000 + 0.866025i
425425 0 0
426426 1.00000i 1.00000i
427427 0 0
428428 0 0
429429 0 0
430430 0.500000 + 0.866025i 0.500000 + 0.866025i
431431 −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i 0.833333π0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
432432 −0.866025 0.500000i −0.866025 0.500000i
433433 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
434434 −0.866025 0.500000i −0.866025 0.500000i
435435 1.00000i 1.00000i
436436 0 0
437437 0 0
438438 −0.500000 0.866025i −0.500000 0.866025i
439439 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
440440 0 0
441441 −1.00000 −1.00000
442442 0 0
443443 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 0.500000 + 0.866025i 0.500000 + 0.866025i
446446 −0.866025 0.500000i −0.866025 0.500000i
447447 0 0
448448 0.500000 0.866025i 0.500000 0.866025i
449449 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
450450 0 0
451451 0 0
452452 0 0
453453 −0.866025 0.500000i −0.866025 0.500000i
454454 −1.00000 −1.00000
455455 0 0
456456 0 0
457457 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
458458 −0.866025 + 0.500000i −0.866025 + 0.500000i
459459 −0.500000 0.866025i −0.500000 0.866025i
460460 0 0
461461 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 0.866025 + 0.500000i 0.866025 + 0.500000i
465465 0.500000 + 0.866025i 0.500000 + 0.866025i
466466 0.500000 + 0.866025i 0.500000 + 0.866025i
467467 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 1.00000i 1.00000i
471471 −0.866025 0.500000i −0.866025 0.500000i
472472 0.500000 + 0.866025i 0.500000 + 0.866025i
473473 0 0
474474 −0.500000 + 0.866025i −0.500000 + 0.866025i
475475 0 0
476476 0 0
477477 1.00000i 1.00000i
478478 0 0
479479 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
480480 0 0
481481 0 0
482482 1.00000i 1.00000i
483483 0.500000 0.866025i 0.500000 0.866025i
484484 0 0
485485 −0.866025 0.500000i −0.866025 0.500000i
486486 −0.500000 0.866025i −0.500000 0.866025i
487487 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
488488 0 0
489489 0 0
490490 0.500000 0.866025i 0.500000 0.866025i
491491 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
492492 0 0
493493 0.500000 + 0.866025i 0.500000 + 0.866025i
494494 0 0
495495 0 0
496496 1.00000 1.00000
497497 −0.866025 0.500000i −0.866025 0.500000i
498498 0 0
499499 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
500500 0 0
501501 0.500000 + 0.866025i 0.500000 + 0.866025i
502502 0.500000 0.866025i 0.500000 0.866025i
503503 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
504504 0.866025 0.500000i 0.866025 0.500000i
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
510510 1.00000 1.00000
511511 1.00000 1.00000
512512 1.00000i 1.00000i
513513 0 0
514514 0.500000 + 0.866025i 0.500000 + 0.866025i
515515 −0.866025 + 0.500000i −0.866025 + 0.500000i
516516 0 0
517517 0 0
518518 1.00000i 1.00000i
519519 0 0
520520 0 0
521521 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
522522 0.500000 + 0.866025i 0.500000 + 0.866025i
523523 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
524524 0 0
525525 0 0
526526 0 0
527527 0.866025 + 0.500000i 0.866025 + 0.500000i
528528 0 0
529529 0 0
530530 −0.866025 0.500000i −0.866025 0.500000i
531531 1.00000i 1.00000i
532532 0 0
533533 0 0
534534 0.866025 + 0.500000i 0.866025 + 0.500000i
535535 0.500000 + 0.866025i 0.500000 + 0.866025i
536536 0 0
537537 0 0
538538 1.00000 1.00000
539539 0 0
540540 0 0
541541 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
542542 0.866025 0.500000i 0.866025 0.500000i
543543 0 0
544544 0 0
545545 1.00000i 1.00000i
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 1.00000i 1.00000i
553553 −0.500000 0.866025i −0.500000 0.866025i
554554 1.00000i 1.00000i
555555 −0.500000 + 0.866025i −0.500000 + 0.866025i
556556 0 0
557557 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
558558 0.866025 + 0.500000i 0.866025 + 0.500000i
559559 0 0
560560 1.00000i 1.00000i
561561 0 0
562562 −1.00000 + 1.73205i −1.00000 + 1.73205i
563563 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
564564 0 0
565565 0.500000 0.866025i 0.500000 0.866025i
566566 0 0
567567 1.00000 1.00000
568568 1.00000 1.00000
569569 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
570570 0 0
571571 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
572572 0 0
573573 2.00000 2.00000
574574 0.500000 + 0.866025i 0.500000 + 0.866025i
575575 0 0
576576 −0.500000 + 0.866025i −0.500000 + 0.866025i
577577 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 −1.00000 −1.00000
583583 0 0
584584 −0.866025 + 0.500000i −0.866025 + 0.500000i
585585 0 0
586586 −0.500000 + 0.866025i −0.500000 + 0.866025i
587587 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
588588 0 0
589589 0 0
590590 −0.866025 0.500000i −0.866025 0.500000i
591591 −0.500000 0.866025i −0.500000 0.866025i
592592 0.500000 + 0.866025i 0.500000 + 0.866025i
593593 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
594594 0 0
595595 −0.500000 + 0.866025i −0.500000 + 0.866025i
596596 0 0
597597 −0.866025 0.500000i −0.866025 0.500000i
598598 0 0
599599 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
600600 0 0
601601 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
602602 −0.866025 + 0.500000i −0.866025 + 0.500000i
603603 0 0
604604 0 0
605605 −0.866025 + 0.500000i −0.866025 + 0.500000i
606606 0 0
607607 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
608608 0 0
609609 −1.00000 −1.00000
610610 0 0
611611 0 0
612612 0 0
613613 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
614614 0 0
615615 1.00000i 1.00000i
616616 0 0
617617 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
618618 −0.500000 + 0.866025i −0.500000 + 0.866025i
619619 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
620620 0 0
621621 −0.500000 + 0.866025i −0.500000 + 0.866025i
622622 −1.00000 −1.00000
623623 −0.866025 + 0.500000i −0.866025 + 0.500000i
624624 0 0
625625 0.500000 0.866025i 0.500000 0.866025i
626626 0.866025 0.500000i 0.866025 0.500000i
627627 0 0
628628 0 0
629629 1.00000i 1.00000i
630630 −0.500000 + 0.866025i −0.500000 + 0.866025i
631631 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
632632 0.866025 + 0.500000i 0.866025 + 0.500000i
633633 0.866025 0.500000i 0.866025 0.500000i
634634 −0.500000 0.866025i −0.500000 0.866025i
635635 −0.866025 0.500000i −0.866025 0.500000i
636636 0 0
637637 0 0
638638 0 0
639639 0.866025 + 0.500000i 0.866025 + 0.500000i
640640 −0.500000 0.866025i −0.500000 0.866025i
641641 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
642642 0.866025 + 0.500000i 0.866025 + 0.500000i
643643 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
644644 0 0
645645 1.00000 1.00000
646646 0 0
647647 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
648648 −0.866025 + 0.500000i −0.866025 + 0.500000i
649649 0 0
650650 0 0
651651 −0.866025 + 0.500000i −0.866025 + 0.500000i
652652 0 0
653653 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
654654 −0.500000 0.866025i −0.500000 0.866025i
655655 −0.500000 0.866025i −0.500000 0.866025i
656656 −0.866025 0.500000i −0.866025 0.500000i
657657 −1.00000 −1.00000
658658 −1.00000 −1.00000
659659 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
660660 0 0
661661 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 1.00000i 1.00000i
667667 0.500000 0.866025i 0.500000 0.866025i
668668 0 0
669669 −0.866025 + 0.500000i −0.866025 + 0.500000i
670670 0 0
671671 0 0
672672 0 0
673673 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
674674 0 0
675675 0 0
676676 0 0
677677 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
678678 1.00000i 1.00000i
679679 0.500000 0.866025i 0.500000 0.866025i
680680 1.00000i 1.00000i
681681 −0.500000 + 0.866025i −0.500000 + 0.866025i
682682 0 0
683683 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 1.00000 1.00000
686686 0.866025 + 0.500000i 0.866025 + 0.500000i
687687 1.00000i 1.00000i
688688 0.500000 0.866025i 0.500000 0.866025i
689689 0 0
690690 −0.500000 0.866025i −0.500000 0.866025i
691691 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
692692 0 0
693693 0 0
694694 −1.00000 −1.00000
695695 −0.866025 0.500000i −0.866025 0.500000i
696696 0.866025 0.500000i 0.866025 0.500000i
697697 −0.500000 0.866025i −0.500000 0.866025i
698698 −0.866025 0.500000i −0.866025 0.500000i
699699 1.00000 1.00000
700700 0 0
701701 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
702702 0 0
703703 0 0
704704 0 0
705705 0.866025 + 0.500000i 0.866025 + 0.500000i
706706 0 0
707707 0 0
708708 0 0
709709 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
710710 −0.866025 + 0.500000i −0.866025 + 0.500000i
711711 0.500000 + 0.866025i 0.500000 + 0.866025i
712712 0.500000 0.866025i 0.500000 0.866025i
713713 1.00000i 1.00000i
714714 1.00000i 1.00000i
715715 0 0
716716 0 0
717717 0 0
718718 0.500000 + 0.866025i 0.500000 + 0.866025i
719719 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
720720 1.00000i 1.00000i
721721 −0.500000 0.866025i −0.500000 0.866025i
722722 1.00000i 1.00000i
723723 −0.866025 0.500000i −0.866025 0.500000i
724724 0 0
725725 0 0
726726 −0.500000 + 0.866025i −0.500000 + 0.866025i
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 −1.00000 −1.00000
730730 0.500000 0.866025i 0.500000 0.866025i
731731 0.866025 0.500000i 0.866025 0.500000i
732732 0 0
733733 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
734734 0 0
735735 −0.500000 0.866025i −0.500000 0.866025i
736736 0 0
737737 0 0
738738 −0.500000 0.866025i −0.500000 0.866025i
739739 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
740740 0 0
741741 0 0
742742 0.500000 0.866025i 0.500000 0.866025i
743743 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
744744 0.500000 0.866025i 0.500000 0.866025i
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 −0.866025 + 0.500000i −0.866025 + 0.500000i
750750 1.00000i 1.00000i
751751 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
752752 0.866025 0.500000i 0.866025 0.500000i
753753 −0.500000 0.866025i −0.500000 0.866025i
754754 0 0
755755 1.00000i 1.00000i
756756 0 0
757757 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
758758 0.866025 + 0.500000i 0.866025 + 0.500000i
759759 0 0
760760 0 0
761761 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 −1.00000 −1.00000
763763 1.00000 1.00000
764764 0 0
765765 0.500000 0.866025i 0.500000 0.866025i
766766 0 0
767767 0 0
768768 0 0
769769 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
770770 0 0
771771 1.00000 1.00000
772772 0 0
773773 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
774774 0.866025 0.500000i 0.866025 0.500000i
775775 0 0
776776 1.00000i 1.00000i
777777 −0.866025 0.500000i −0.866025 0.500000i
778778 1.00000 1.00000
779779 0 0
780780 0 0
781781 0 0
782782 −0.866025 0.500000i −0.866025 0.500000i
783783 1.00000 1.00000
784784 −1.00000 −1.00000
785785 1.00000i 1.00000i
786786 −0.866025 0.500000i −0.866025 0.500000i
787787 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
788788 0 0
789789 0 0
790790 −1.00000 −1.00000
791791 0.866025 + 0.500000i 0.866025 + 0.500000i
792792 0 0
793793 0 0
794794 0 0
795795 −0.866025 + 0.500000i −0.866025 + 0.500000i
796796 0 0
797797 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
798798 0 0
799799 1.00000 1.00000
800800 0 0
801801 0.866025 0.500000i 0.866025 0.500000i
802802 0.500000 + 0.866025i 0.500000 + 0.866025i
803803 0 0
804804 0 0
805805 1.00000 1.00000
806806 0 0
807807 0.500000 0.866025i 0.500000 0.866025i
808808 0 0
809809 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
810810 0.500000 0.866025i 0.500000 0.866025i
811811 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
812812 0 0
813813 1.00000i 1.00000i
814814 0 0
815815 0 0
816816 −0.500000 0.866025i −0.500000 0.866025i
817817 0 0
818818 1.00000i 1.00000i
819819 0 0
820820 0 0
821821 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
822822 0.866025 0.500000i 0.866025 0.500000i
823823 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
824824 0.866025 + 0.500000i 0.866025 + 0.500000i
825825 0 0
826826 0.500000 0.866025i 0.500000 0.866025i
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
830830 0 0
831831 −0.866025 0.500000i −0.866025 0.500000i
832832 0 0
833833 −0.866025 0.500000i −0.866025 0.500000i
834834 −1.00000 −1.00000
835835 −0.500000 + 0.866025i −0.500000 + 0.866025i
836836 0 0
837837 0.866025 0.500000i 0.866025 0.500000i
838838 0.500000 0.866025i 0.500000 0.866025i
839839 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
840840 0.866025 + 0.500000i 0.866025 + 0.500000i
841841 0 0
842842 0 0
843843 1.00000 + 1.73205i 1.00000 + 1.73205i
844844 0 0
845845 0 0
846846 1.00000 1.00000
847847 −0.500000 0.866025i −0.500000 0.866025i
848848 1.00000i 1.00000i
849849 0 0
850850 0 0
851851 0.866025 0.500000i 0.866025 0.500000i
852852 0 0
853853 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
854854 0 0
855855 0 0
856856 0.500000 0.866025i 0.500000 0.866025i
857857 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
858858 0 0
859859 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
860860 0 0
861861 1.00000 1.00000
862862 −2.00000 −2.00000
863863 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 0 0
866866 0.866025 + 0.500000i 0.866025 + 0.500000i
867867 0 0
868868 0 0
869869 0 0
870870 −0.500000 + 0.866025i −0.500000 + 0.866025i
871871 0 0
872872 −0.866025 + 0.500000i −0.866025 + 0.500000i
873873 −0.500000 + 0.866025i −0.500000 + 0.866025i
874874 0 0
875875 0.866025 + 0.500000i 0.866025 + 0.500000i
876876 0 0
877877 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
878878 −0.866025 + 0.500000i −0.866025 + 0.500000i
879879 0.500000 + 0.866025i 0.500000 + 0.866025i
880880 0 0
881881 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
882882 −0.866025 0.500000i −0.866025 0.500000i
883883 2.00000 2.00000 1.00000 00
1.00000 00
884884 0 0
885885 −0.866025 + 0.500000i −0.866025 + 0.500000i
886886 0.500000 + 0.866025i 0.500000 + 0.866025i
887887 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
888888 1.00000 1.00000
889889 0.500000 0.866025i 0.500000 0.866025i
890890 1.00000i 1.00000i
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0.866025 0.500000i 0.866025 0.500000i
897897 0 0
898898 −0.500000 + 0.866025i −0.500000 + 0.866025i
899899 −0.866025 + 0.500000i −0.866025 + 0.500000i
900900 0 0
901901 −0.500000 + 0.866025i −0.500000 + 0.866025i
902902 0 0
903903 1.00000i 1.00000i
904904 −1.00000 −1.00000
905905 0 0
906906 −0.500000 0.866025i −0.500000 0.866025i
907907 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0.866025 0.500000i 0.866025 0.500000i
915915 0 0
916916 0 0
917917 0.866025 0.500000i 0.866025 0.500000i
918918 1.00000i 1.00000i
919919 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
920920 −0.866025 + 0.500000i −0.866025 + 0.500000i
921921 0 0
922922 0.500000 0.866025i 0.500000 0.866025i
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0.500000 + 0.866025i 0.500000 + 0.866025i
928928 0 0
929929 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
930930 1.00000i 1.00000i
931931 0 0
932932 0 0
933933 −0.500000 + 0.866025i −0.500000 + 0.866025i
934934 0.500000 + 0.866025i 0.500000 + 0.866025i
935935 0 0
936936 0 0
937937 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 1.00000i 1.00000i
940940 0 0
941941 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
942942 −0.500000 0.866025i −0.500000 0.866025i
943943 −0.500000 + 0.866025i −0.500000 + 0.866025i
944944 1.00000i 1.00000i
945945 0.500000 + 0.866025i 0.500000 + 0.866025i
946946 0 0
947947 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
948948 0 0
949949 0 0
950950 0 0
951951 −1.00000 −1.00000
952952 1.00000 1.00000
953953 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
954954 −0.500000 + 0.866025i −0.500000 + 0.866025i
955955 1.00000 + 1.73205i 1.00000 + 1.73205i
956956 0 0
957957 0 0
958958 0 0
959959 1.00000i 1.00000i
960960 −1.00000 −1.00000
961961 0 0
962962 0 0
963963 0.866025 0.500000i 0.866025 0.500000i
964964 0 0
965965 0 0
966966 0.866025 0.500000i 0.866025 0.500000i
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 0.866025 + 0.500000i 0.866025 + 0.500000i
969969 0 0
970970 −0.500000 0.866025i −0.500000 0.866025i
971971 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
972972 0 0
973973 0.500000 0.866025i 0.500000 0.866025i
974974 1.00000i 1.00000i
975975 0 0
976976 0 0
977977 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
978978 0 0
979979 0 0
980980 0 0
981981 −1.00000 −1.00000
982982 −0.500000 + 0.866025i −0.500000 + 0.866025i
983983 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
984984 −0.866025 + 0.500000i −0.866025 + 0.500000i
985985 0.500000 0.866025i 0.500000 0.866025i
986986 1.00000i 1.00000i
987987 −0.500000 + 0.866025i −0.500000 + 0.866025i
988988 0 0
989989 −0.866025 0.500000i −0.866025 0.500000i
990990 0 0
991991 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
992992 0 0
993993 0 0
994994 −0.500000 0.866025i −0.500000 0.866025i
995995 1.00000i 1.00000i
996996 0 0
997997 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
998998 −0.866025 + 0.500000i −0.866025 + 0.500000i
999999 0.866025 + 0.500000i 0.866025 + 0.500000i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3549.1.bk.d.170.2 4
3.2 odd 2 inner 3549.1.bk.d.170.1 4
7.4 even 3 inner 3549.1.bk.d.1691.1 4
13.2 odd 12 3549.1.x.d.485.2 4
13.3 even 3 273.1.bm.b.191.1 yes 4
13.4 even 6 3549.1.s.b.653.2 4
13.5 odd 4 3549.1.w.e.506.2 4
13.6 odd 12 3549.1.bp.b.23.1 4
13.7 odd 12 3549.1.bp.d.23.1 4
13.8 odd 4 3549.1.w.c.506.2 4
13.9 even 3 273.1.s.b.107.1 yes 4
13.10 even 6 3549.1.bm.c.191.2 4
13.11 odd 12 3549.1.x.b.485.2 4
13.12 even 2 3549.1.bk.c.170.1 4
21.11 odd 6 inner 3549.1.bk.d.1691.2 4
39.2 even 12 3549.1.x.b.485.1 4
39.5 even 4 3549.1.w.c.506.1 4
39.8 even 4 3549.1.w.e.506.1 4
39.11 even 12 3549.1.x.d.485.1 4
39.17 odd 6 3549.1.s.b.653.1 4
39.20 even 12 3549.1.bp.b.23.2 4
39.23 odd 6 3549.1.bm.c.191.1 4
39.29 odd 6 273.1.bm.b.191.2 yes 4
39.32 even 12 3549.1.bp.d.23.2 4
39.35 odd 6 273.1.s.b.107.2 yes 4
39.38 odd 2 3549.1.bk.c.170.2 4
91.3 odd 6 1911.1.s.b.1439.1 4
91.4 even 6 3549.1.bm.c.2174.1 4
91.9 even 3 1911.1.be.c.1667.1 4
91.11 odd 12 3549.1.bp.d.2006.2 4
91.16 even 3 1911.1.be.c.932.2 4
91.18 odd 12 3549.1.w.e.2027.1 4
91.25 even 6 3549.1.bk.c.1691.2 4
91.32 odd 12 3549.1.x.d.1544.2 4
91.46 odd 12 3549.1.x.b.1544.2 4
91.48 odd 6 1911.1.s.b.1745.1 4
91.55 odd 6 1911.1.bm.b.1010.1 4
91.60 odd 12 3549.1.w.c.2027.1 4
91.61 odd 6 1911.1.be.d.1667.1 4
91.67 odd 12 3549.1.bp.b.2006.2 4
91.68 odd 6 1911.1.be.d.932.2 4
91.74 even 3 273.1.bm.b.263.2 yes 4
91.81 even 3 273.1.s.b.74.1 4
91.87 odd 6 1911.1.bm.b.263.2 4
91.88 even 6 3549.1.s.b.1712.2 4
273.11 even 12 3549.1.bp.b.2006.1 4
273.32 even 12 3549.1.x.b.1544.1 4
273.68 even 6 1911.1.be.d.932.1 4
273.74 odd 6 273.1.bm.b.263.1 yes 4
273.95 odd 6 3549.1.bm.c.2174.2 4
273.107 odd 6 1911.1.be.c.932.1 4
273.116 odd 6 3549.1.bk.c.1691.1 4
273.137 even 12 3549.1.x.d.1544.1 4
273.146 even 6 1911.1.bm.b.1010.2 4
273.152 even 6 1911.1.be.d.1667.2 4
273.158 even 12 3549.1.bp.d.2006.1 4
273.179 odd 6 3549.1.s.b.1712.1 4
273.185 even 6 1911.1.s.b.1439.2 4
273.191 odd 6 1911.1.be.c.1667.2 4
273.200 even 12 3549.1.w.c.2027.2 4
273.230 even 6 1911.1.s.b.1745.2 4
273.242 even 12 3549.1.w.e.2027.2 4
273.263 odd 6 273.1.s.b.74.2 yes 4
273.269 even 6 1911.1.bm.b.263.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.1.s.b.74.1 4 91.81 even 3
273.1.s.b.74.2 yes 4 273.263 odd 6
273.1.s.b.107.1 yes 4 13.9 even 3
273.1.s.b.107.2 yes 4 39.35 odd 6
273.1.bm.b.191.1 yes 4 13.3 even 3
273.1.bm.b.191.2 yes 4 39.29 odd 6
273.1.bm.b.263.1 yes 4 273.74 odd 6
273.1.bm.b.263.2 yes 4 91.74 even 3
1911.1.s.b.1439.1 4 91.3 odd 6
1911.1.s.b.1439.2 4 273.185 even 6
1911.1.s.b.1745.1 4 91.48 odd 6
1911.1.s.b.1745.2 4 273.230 even 6
1911.1.be.c.932.1 4 273.107 odd 6
1911.1.be.c.932.2 4 91.16 even 3
1911.1.be.c.1667.1 4 91.9 even 3
1911.1.be.c.1667.2 4 273.191 odd 6
1911.1.be.d.932.1 4 273.68 even 6
1911.1.be.d.932.2 4 91.68 odd 6
1911.1.be.d.1667.1 4 91.61 odd 6
1911.1.be.d.1667.2 4 273.152 even 6
1911.1.bm.b.263.1 4 273.269 even 6
1911.1.bm.b.263.2 4 91.87 odd 6
1911.1.bm.b.1010.1 4 91.55 odd 6
1911.1.bm.b.1010.2 4 273.146 even 6
3549.1.s.b.653.1 4 39.17 odd 6
3549.1.s.b.653.2 4 13.4 even 6
3549.1.s.b.1712.1 4 273.179 odd 6
3549.1.s.b.1712.2 4 91.88 even 6
3549.1.w.c.506.1 4 39.5 even 4
3549.1.w.c.506.2 4 13.8 odd 4
3549.1.w.c.2027.1 4 91.60 odd 12
3549.1.w.c.2027.2 4 273.200 even 12
3549.1.w.e.506.1 4 39.8 even 4
3549.1.w.e.506.2 4 13.5 odd 4
3549.1.w.e.2027.1 4 91.18 odd 12
3549.1.w.e.2027.2 4 273.242 even 12
3549.1.x.b.485.1 4 39.2 even 12
3549.1.x.b.485.2 4 13.11 odd 12
3549.1.x.b.1544.1 4 273.32 even 12
3549.1.x.b.1544.2 4 91.46 odd 12
3549.1.x.d.485.1 4 39.11 even 12
3549.1.x.d.485.2 4 13.2 odd 12
3549.1.x.d.1544.1 4 273.137 even 12
3549.1.x.d.1544.2 4 91.32 odd 12
3549.1.bk.c.170.1 4 13.12 even 2
3549.1.bk.c.170.2 4 39.38 odd 2
3549.1.bk.c.1691.1 4 273.116 odd 6
3549.1.bk.c.1691.2 4 91.25 even 6
3549.1.bk.d.170.1 4 3.2 odd 2 inner
3549.1.bk.d.170.2 4 1.1 even 1 trivial
3549.1.bk.d.1691.1 4 7.4 even 3 inner
3549.1.bk.d.1691.2 4 21.11 odd 6 inner
3549.1.bm.c.191.1 4 39.23 odd 6
3549.1.bm.c.191.2 4 13.10 even 6
3549.1.bm.c.2174.1 4 91.4 even 6
3549.1.bm.c.2174.2 4 273.95 odd 6
3549.1.bp.b.23.1 4 13.6 odd 12
3549.1.bp.b.23.2 4 39.20 even 12
3549.1.bp.b.2006.1 4 273.11 even 12
3549.1.bp.b.2006.2 4 91.67 odd 12
3549.1.bp.d.23.1 4 13.7 odd 12
3549.1.bp.d.23.2 4 39.32 even 12
3549.1.bp.d.2006.1 4 273.158 even 12
3549.1.bp.d.2006.2 4 91.11 odd 12