Properties

Label 3549.1.s.b.1712.2
Level 35493549
Weight 11
Character 3549.1712
Analytic conductor 1.7711.771
Analytic rank 00
Dimension 44
Projective image A4A_{4}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3549,1,Mod(653,3549)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3549, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3549.653");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3549=37132 3549 = 3 \cdot 7 \cdot 13^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3549.s (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.771181729831.77118172983
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 273)
Projective image: A4A_{4}
Projective field: Galois closure of 4.0.74529.1

Embedding invariants

Embedding label 1712.2
Root 0.866025+0.500000i-0.866025 + 0.500000i of defining polynomial
Character χ\chi == 3549.1712
Dual form 3549.1.s.b.653.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000iq2+(0.8660250.500000i)q3+(0.8660250.500000i)q5+(0.500000+0.866025i)q6+(0.5000000.866025i)q7+1.00000iq8+(0.5000000.866025i)q9+(0.500000+0.866025i)q10+(0.866025+0.500000i)q14+(0.5000000.866025i)q151.00000q16+1.00000iq17+(0.866025+0.500000i)q181.00000iq21+1.00000iq23+(0.500000+0.866025i)q241.00000iq27+(0.8660250.500000i)q29+(0.866025+0.500000i)q30+(0.500000+0.866025i)q311.00000q341.00000iq351.00000q37+(0.500000+0.866025i)q40+(0.8660250.500000i)q41+1.00000q42+(0.5000000.866025i)q431.00000iq451.00000q46+(0.8660250.500000i)q47+(0.866025+0.500000i)q48+(0.5000000.866025i)q49+(0.500000+0.866025i)q51+(0.866025+0.500000i)q53+1.00000q54+(0.866025+0.500000i)q56+(0.5000000.866025i)q58+1.00000iq59+(0.8660250.500000i)q62+(0.5000000.866025i)q631.00000q64+(0.500000+0.866025i)q69+1.00000q70+(0.866025+0.500000i)q71+(0.866025+0.500000i)q72+(0.5000000.866025i)q731.00000iq74+(0.5000000.866025i)q79+(0.866025+0.500000i)q80+(0.5000000.866025i)q81+(0.5000000.866025i)q82+(0.500000+0.866025i)q85+(0.8660250.500000i)q861.00000q87+1.00000iq89+1.00000q90+1.00000iq93+(0.500000+0.866025i)q94+(0.5000000.866025i)q97+(0.8660250.500000i)q98+O(q100)q+1.00000i q^{2} +(0.866025 - 0.500000i) q^{3} +(0.866025 - 0.500000i) q^{5} +(0.500000 + 0.866025i) q^{6} +(0.500000 - 0.866025i) q^{7} +1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(0.500000 + 0.866025i) q^{10} +(0.866025 + 0.500000i) q^{14} +(0.500000 - 0.866025i) q^{15} -1.00000 q^{16} +1.00000i q^{17} +(0.866025 + 0.500000i) q^{18} -1.00000i q^{21} +1.00000i q^{23} +(0.500000 + 0.866025i) q^{24} -1.00000i q^{27} +(-0.866025 - 0.500000i) q^{29} +(0.866025 + 0.500000i) q^{30} +(-0.500000 + 0.866025i) q^{31} -1.00000 q^{34} -1.00000i q^{35} -1.00000 q^{37} +(0.500000 + 0.866025i) q^{40} +(-0.866025 - 0.500000i) q^{41} +1.00000 q^{42} +(-0.500000 - 0.866025i) q^{43} -1.00000i q^{45} -1.00000 q^{46} +(0.866025 - 0.500000i) q^{47} +(-0.866025 + 0.500000i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(0.500000 + 0.866025i) q^{51} +(0.866025 + 0.500000i) q^{53} +1.00000 q^{54} +(0.866025 + 0.500000i) q^{56} +(0.500000 - 0.866025i) q^{58} +1.00000i q^{59} +(-0.866025 - 0.500000i) q^{62} +(-0.500000 - 0.866025i) q^{63} -1.00000 q^{64} +(0.500000 + 0.866025i) q^{69} +1.00000 q^{70} +(-0.866025 + 0.500000i) q^{71} +(0.866025 + 0.500000i) q^{72} +(0.500000 - 0.866025i) q^{73} -1.00000i q^{74} +(-0.500000 - 0.866025i) q^{79} +(-0.866025 + 0.500000i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(0.500000 - 0.866025i) q^{82} +(0.500000 + 0.866025i) q^{85} +(0.866025 - 0.500000i) q^{86} -1.00000 q^{87} +1.00000i q^{89} +1.00000 q^{90} +1.00000i q^{93} +(0.500000 + 0.866025i) q^{94} +(-0.500000 - 0.866025i) q^{97} +(0.866025 - 0.500000i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q6+2q7+2q9+2q10+2q154q16+2q242q314q344q37+2q40+4q422q434q462q49+2q51+4q54+2q582q63+2q97+O(q100) 4 q + 2 q^{6} + 2 q^{7} + 2 q^{9} + 2 q^{10} + 2 q^{15} - 4 q^{16} + 2 q^{24} - 2 q^{31} - 4 q^{34} - 4 q^{37} + 2 q^{40} + 4 q^{42} - 2 q^{43} - 4 q^{46} - 2 q^{49} + 2 q^{51} + 4 q^{54} + 2 q^{58} - 2 q^{63}+ \cdots - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3549Z)×\left(\mathbb{Z}/3549\mathbb{Z}\right)^\times.

nn 11841184 15221522 33823382
χ(n)\chi(n) 1-1 e(23)e\left(\frac{2}{3}\right) e(23)e\left(\frac{2}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
33 0.866025 0.500000i 0.866025 0.500000i
44 0 0
55 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
66 0.500000 + 0.866025i 0.500000 + 0.866025i
77 0.500000 0.866025i 0.500000 0.866025i
88 1.00000i 1.00000i
99 0.500000 0.866025i 0.500000 0.866025i
1010 0.500000 + 0.866025i 0.500000 + 0.866025i
1111 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1212 0 0
1313 0 0
1414 0.866025 + 0.500000i 0.866025 + 0.500000i
1515 0.500000 0.866025i 0.500000 0.866025i
1616 −1.00000 −1.00000
1717 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
1818 0.866025 + 0.500000i 0.866025 + 0.500000i
1919 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
2020 0 0
2121 1.00000i 1.00000i
2222 0 0
2323 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
2424 0.500000 + 0.866025i 0.500000 + 0.866025i
2525 0 0
2626 0 0
2727 1.00000i 1.00000i
2828 0 0
2929 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
3030 0.866025 + 0.500000i 0.866025 + 0.500000i
3131 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
3232 0 0
3333 0 0
3434 −1.00000 −1.00000
3535 1.00000i 1.00000i
3636 0 0
3737 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3838 0 0
3939 0 0
4040 0.500000 + 0.866025i 0.500000 + 0.866025i
4141 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
4242 1.00000 1.00000
4343 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
4444 0 0
4545 1.00000i 1.00000i
4646 −1.00000 −1.00000
4747 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
4848 −0.866025 + 0.500000i −0.866025 + 0.500000i
4949 −0.500000 0.866025i −0.500000 0.866025i
5050 0 0
5151 0.500000 + 0.866025i 0.500000 + 0.866025i
5252 0 0
5353 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
5454 1.00000 1.00000
5555 0 0
5656 0.866025 + 0.500000i 0.866025 + 0.500000i
5757 0 0
5858 0.500000 0.866025i 0.500000 0.866025i
5959 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6060 0 0
6161 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
6262 −0.866025 0.500000i −0.866025 0.500000i
6363 −0.500000 0.866025i −0.500000 0.866025i
6464 −1.00000 −1.00000
6565 0 0
6666 0 0
6767 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6868 0 0
6969 0.500000 + 0.866025i 0.500000 + 0.866025i
7070 1.00000 1.00000
7171 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
7272 0.866025 + 0.500000i 0.866025 + 0.500000i
7373 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
7474 1.00000i 1.00000i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
8080 −0.866025 + 0.500000i −0.866025 + 0.500000i
8181 −0.500000 0.866025i −0.500000 0.866025i
8282 0.500000 0.866025i 0.500000 0.866025i
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 0.500000 + 0.866025i 0.500000 + 0.866025i
8686 0.866025 0.500000i 0.866025 0.500000i
8787 −1.00000 −1.00000
8888 0 0
8989 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
9090 1.00000 1.00000
9191 0 0
9292 0 0
9393 1.00000i 1.00000i
9494 0.500000 + 0.866025i 0.500000 + 0.866025i
9595 0 0
9696 0 0
9797 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
9898 0.866025 0.500000i 0.866025 0.500000i
9999 0 0
100100 0 0
101101 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
102102 −0.866025 + 0.500000i −0.866025 + 0.500000i
103103 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
104104 0 0
105105 −0.500000 0.866025i −0.500000 0.866025i
106106 −0.500000 + 0.866025i −0.500000 + 0.866025i
107107 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
108108 0 0
109109 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
110110 0 0
111111 −0.866025 + 0.500000i −0.866025 + 0.500000i
112112 −0.500000 + 0.866025i −0.500000 + 0.866025i
113113 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
114114 0 0
115115 0.500000 + 0.866025i 0.500000 + 0.866025i
116116 0 0
117117 0 0
118118 −1.00000 −1.00000
119119 0.866025 + 0.500000i 0.866025 + 0.500000i
120120 0.866025 + 0.500000i 0.866025 + 0.500000i
121121 −0.500000 + 0.866025i −0.500000 + 0.866025i
122122 0 0
123123 −1.00000 −1.00000
124124 0 0
125125 1.00000i 1.00000i
126126 0.866025 0.500000i 0.866025 0.500000i
127127 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
128128 1.00000i 1.00000i
129129 −0.866025 0.500000i −0.866025 0.500000i
130130 0 0
131131 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
132132 0 0
133133 0 0
134134 0 0
135135 −0.500000 0.866025i −0.500000 0.866025i
136136 −1.00000 −1.00000
137137 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
138138 −0.866025 + 0.500000i −0.866025 + 0.500000i
139139 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
140140 0 0
141141 0.500000 0.866025i 0.500000 0.866025i
142142 −0.500000 0.866025i −0.500000 0.866025i
143143 0 0
144144 −0.500000 + 0.866025i −0.500000 + 0.866025i
145145 −1.00000 −1.00000
146146 0.866025 + 0.500000i 0.866025 + 0.500000i
147147 −0.866025 0.500000i −0.866025 0.500000i
148148 0 0
149149 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 0 0
151151 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
152152 0 0
153153 0.866025 + 0.500000i 0.866025 + 0.500000i
154154 0 0
155155 1.00000i 1.00000i
156156 0 0
157157 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
158158 0.866025 0.500000i 0.866025 0.500000i
159159 1.00000 1.00000
160160 0 0
161161 0.866025 + 0.500000i 0.866025 + 0.500000i
162162 0.866025 0.500000i 0.866025 0.500000i
163163 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
164164 0 0
165165 0 0
166166 0 0
167167 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
168168 1.00000 1.00000
169169 0 0
170170 −0.866025 + 0.500000i −0.866025 + 0.500000i
171171 0 0
172172 0 0
173173 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
174174 1.00000i 1.00000i
175175 0 0
176176 0 0
177177 0.500000 + 0.866025i 0.500000 + 0.866025i
178178 −1.00000 −1.00000
179179 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
180180 0 0
181181 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
182182 0 0
183183 0 0
184184 −1.00000 −1.00000
185185 −0.866025 + 0.500000i −0.866025 + 0.500000i
186186 −1.00000 −1.00000
187187 0 0
188188 0 0
189189 −0.866025 0.500000i −0.866025 0.500000i
190190 0 0
191191 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
192192 −0.866025 + 0.500000i −0.866025 + 0.500000i
193193 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
194194 0.866025 0.500000i 0.866025 0.500000i
195195 0 0
196196 0 0
197197 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
198198 0 0
199199 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
200200 0 0
201201 0 0
202202 0 0
203203 −0.866025 + 0.500000i −0.866025 + 0.500000i
204204 0 0
205205 −1.00000 −1.00000
206206 0.866025 0.500000i 0.866025 0.500000i
207207 0.866025 + 0.500000i 0.866025 + 0.500000i
208208 0 0
209209 0 0
210210 0.866025 0.500000i 0.866025 0.500000i
211211 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
212212 0 0
213213 −0.500000 + 0.866025i −0.500000 + 0.866025i
214214 1.00000 1.00000
215215 −0.866025 0.500000i −0.866025 0.500000i
216216 1.00000 1.00000
217217 0.500000 + 0.866025i 0.500000 + 0.866025i
218218 0.866025 + 0.500000i 0.866025 + 0.500000i
219219 1.00000i 1.00000i
220220 0 0
221221 0 0
222222 −0.500000 0.866025i −0.500000 0.866025i
223223 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
224224 0 0
225225 0 0
226226 −0.500000 0.866025i −0.500000 0.866025i
227227 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
228228 0 0
229229 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
230230 −0.866025 + 0.500000i −0.866025 + 0.500000i
231231 0 0
232232 0.500000 0.866025i 0.500000 0.866025i
233233 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 0.500000 0.866025i 0.500000 0.866025i
236236 0 0
237237 −0.866025 0.500000i −0.866025 0.500000i
238238 −0.500000 + 0.866025i −0.500000 + 0.866025i
239239 0 0 1.00000 00
−1.00000 π\pi
240240 −0.500000 + 0.866025i −0.500000 + 0.866025i
241241 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
242242 −0.866025 0.500000i −0.866025 0.500000i
243243 −0.866025 0.500000i −0.866025 0.500000i
244244 0 0
245245 −0.866025 0.500000i −0.866025 0.500000i
246246 1.00000i 1.00000i
247247 0 0
248248 −0.866025 0.500000i −0.866025 0.500000i
249249 0 0
250250 −1.00000 −1.00000
251251 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0.866025 + 0.500000i 0.866025 + 0.500000i
255255 0.866025 + 0.500000i 0.866025 + 0.500000i
256256 0 0
257257 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
258258 0.500000 0.866025i 0.500000 0.866025i
259259 −0.500000 + 0.866025i −0.500000 + 0.866025i
260260 0 0
261261 −0.866025 + 0.500000i −0.866025 + 0.500000i
262262 0.500000 + 0.866025i 0.500000 + 0.866025i
263263 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
264264 0 0
265265 1.00000 1.00000
266266 0 0
267267 0.500000 + 0.866025i 0.500000 + 0.866025i
268268 0 0
269269 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
270270 0.866025 0.500000i 0.866025 0.500000i
271271 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
272272 1.00000i 1.00000i
273273 0 0
274274 1.00000 1.00000
275275 0 0
276276 0 0
277277 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
278278 −0.866025 + 0.500000i −0.866025 + 0.500000i
279279 0.500000 + 0.866025i 0.500000 + 0.866025i
280280 1.00000 1.00000
281281 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
282282 0.866025 + 0.500000i 0.866025 + 0.500000i
283283 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
284284 0 0
285285 0 0
286286 0 0
287287 −0.866025 + 0.500000i −0.866025 + 0.500000i
288288 0 0
289289 0 0
290290 1.00000i 1.00000i
291291 −0.866025 0.500000i −0.866025 0.500000i
292292 0 0
293293 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
294294 0.500000 0.866025i 0.500000 0.866025i
295295 0.500000 + 0.866025i 0.500000 + 0.866025i
296296 1.00000i 1.00000i
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 −1.00000 −1.00000
302302 0.866025 + 0.500000i 0.866025 + 0.500000i
303303 0 0
304304 0 0
305305 0 0
306306 −0.500000 + 0.866025i −0.500000 + 0.866025i
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 −0.866025 0.500000i −0.866025 0.500000i
310310 −1.00000 −1.00000
311311 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
314314 −0.866025 0.500000i −0.866025 0.500000i
315315 −0.866025 0.500000i −0.866025 0.500000i
316316 0 0
317317 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
318318 1.00000i 1.00000i
319319 0 0
320320 −0.866025 + 0.500000i −0.866025 + 0.500000i
321321 −0.500000 0.866025i −0.500000 0.866025i
322322 −0.500000 + 0.866025i −0.500000 + 0.866025i
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 1.00000i 1.00000i
328328 0.500000 0.866025i 0.500000 0.866025i
329329 1.00000i 1.00000i
330330 0 0
331331 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
332332 0 0
333333 −0.500000 + 0.866025i −0.500000 + 0.866025i
334334 −0.500000 + 0.866025i −0.500000 + 0.866025i
335335 0 0
336336 1.00000i 1.00000i
337337 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
338338 0 0
339339 −0.500000 + 0.866025i −0.500000 + 0.866025i
340340 0 0
341341 0 0
342342 0 0
343343 −1.00000 −1.00000
344344 0.866025 0.500000i 0.866025 0.500000i
345345 0.866025 + 0.500000i 0.866025 + 0.500000i
346346 0 0
347347 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
348348 0 0
349349 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
354354 −0.866025 + 0.500000i −0.866025 + 0.500000i
355355 −0.500000 + 0.866025i −0.500000 + 0.866025i
356356 0 0
357357 1.00000 1.00000
358358 0 0
359359 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
360360 1.00000 1.00000
361361 0.500000 + 0.866025i 0.500000 + 0.866025i
362362 0 0
363363 1.00000i 1.00000i
364364 0 0
365365 1.00000i 1.00000i
366366 0 0
367367 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
368368 1.00000i 1.00000i
369369 −0.866025 + 0.500000i −0.866025 + 0.500000i
370370 −0.500000 0.866025i −0.500000 0.866025i
371371 0.866025 0.500000i 0.866025 0.500000i
372372 0 0
373373 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
374374 0 0
375375 0.500000 + 0.866025i 0.500000 + 0.866025i
376376 0.500000 + 0.866025i 0.500000 + 0.866025i
377377 0 0
378378 0.500000 0.866025i 0.500000 0.866025i
379379 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
380380 0 0
381381 1.00000i 1.00000i
382382 −1.00000 + 1.73205i −1.00000 + 1.73205i
383383 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
384384 −0.500000 0.866025i −0.500000 0.866025i
385385 0 0
386386 0 0
387387 −1.00000 −1.00000
388388 0 0
389389 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
390390 0 0
391391 −1.00000 −1.00000
392392 0.866025 0.500000i 0.866025 0.500000i
393393 0.500000 0.866025i 0.500000 0.866025i
394394 0.500000 0.866025i 0.500000 0.866025i
395395 −0.866025 0.500000i −0.866025 0.500000i
396396 0 0
397397 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
398398 1.00000i 1.00000i
399399 0 0
400400 0 0
401401 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
402402 0 0
403403 0 0
404404 0 0
405405 −0.866025 0.500000i −0.866025 0.500000i
406406 −0.500000 0.866025i −0.500000 0.866025i
407407 0 0
408408 −0.866025 + 0.500000i −0.866025 + 0.500000i
409409 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
410410 1.00000i 1.00000i
411411 −0.500000 0.866025i −0.500000 0.866025i
412412 0 0
413413 0.866025 + 0.500000i 0.866025 + 0.500000i
414414 −0.500000 + 0.866025i −0.500000 + 0.866025i
415415 0 0
416416 0 0
417417 0.866025 + 0.500000i 0.866025 + 0.500000i
418418 0 0
419419 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
422422 −0.866025 0.500000i −0.866025 0.500000i
423423 1.00000i 1.00000i
424424 −0.500000 + 0.866025i −0.500000 + 0.866025i
425425 0 0
426426 −0.866025 0.500000i −0.866025 0.500000i
427427 0 0
428428 0 0
429429 0 0
430430 0.500000 0.866025i 0.500000 0.866025i
431431 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
432432 1.00000i 1.00000i
433433 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
434434 −0.866025 + 0.500000i −0.866025 + 0.500000i
435435 −0.866025 + 0.500000i −0.866025 + 0.500000i
436436 0 0
437437 0 0
438438 1.00000 1.00000
439439 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
440440 0 0
441441 −1.00000 −1.00000
442442 0 0
443443 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 0.500000 + 0.866025i 0.500000 + 0.866025i
446446 −0.866025 0.500000i −0.866025 0.500000i
447447 0 0
448448 −0.500000 + 0.866025i −0.500000 + 0.866025i
449449 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
450450 0 0
451451 0 0
452452 0 0
453453 1.00000i 1.00000i
454454 −1.00000 −1.00000
455455 0 0
456456 0 0
457457 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
458458 −0.866025 + 0.500000i −0.866025 + 0.500000i
459459 1.00000 1.00000
460460 0 0
461461 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 0.866025 + 0.500000i 0.866025 + 0.500000i
465465 0.500000 + 0.866025i 0.500000 + 0.866025i
466466 −0.500000 0.866025i −0.500000 0.866025i
467467 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 0.866025 + 0.500000i 0.866025 + 0.500000i
471471 1.00000i 1.00000i
472472 −1.00000 −1.00000
473473 0 0
474474 0.500000 0.866025i 0.500000 0.866025i
475475 0 0
476476 0 0
477477 0.866025 0.500000i 0.866025 0.500000i
478478 0 0
479479 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
480480 0 0
481481 0 0
482482 1.00000i 1.00000i
483483 1.00000 1.00000
484484 0 0
485485 −0.866025 0.500000i −0.866025 0.500000i
486486 0.500000 0.866025i 0.500000 0.866025i
487487 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
488488 0 0
489489 0 0
490490 0.500000 0.866025i 0.500000 0.866025i
491491 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
492492 0 0
493493 0.500000 0.866025i 0.500000 0.866025i
494494 0 0
495495 0 0
496496 0.500000 0.866025i 0.500000 0.866025i
497497 1.00000i 1.00000i
498498 0 0
499499 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
500500 0 0
501501 1.00000 1.00000
502502 −0.500000 0.866025i −0.500000 0.866025i
503503 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
504504 0.866025 0.500000i 0.866025 0.500000i
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
510510 −0.500000 + 0.866025i −0.500000 + 0.866025i
511511 −0.500000 0.866025i −0.500000 0.866025i
512512 1.00000i 1.00000i
513513 0 0
514514 1.00000 1.00000
515515 −0.866025 0.500000i −0.866025 0.500000i
516516 0 0
517517 0 0
518518 −0.866025 0.500000i −0.866025 0.500000i
519519 0 0
520520 0 0
521521 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
522522 −0.500000 0.866025i −0.500000 0.866025i
523523 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
524524 0 0
525525 0 0
526526 0 0
527527 −0.866025 0.500000i −0.866025 0.500000i
528528 0 0
529529 0 0
530530 1.00000i 1.00000i
531531 0.866025 + 0.500000i 0.866025 + 0.500000i
532532 0 0
533533 0 0
534534 −0.866025 + 0.500000i −0.866025 + 0.500000i
535535 −0.500000 0.866025i −0.500000 0.866025i
536536 0 0
537537 0 0
538538 −1.00000 −1.00000
539539 0 0
540540 0 0
541541 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
542542 1.00000i 1.00000i
543543 0 0
544544 0 0
545545 1.00000i 1.00000i
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 −0.866025 + 0.500000i −0.866025 + 0.500000i
553553 −1.00000 −1.00000
554554 1.00000i 1.00000i
555555 −0.500000 + 0.866025i −0.500000 + 0.866025i
556556 0 0
557557 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
558558 −0.866025 + 0.500000i −0.866025 + 0.500000i
559559 0 0
560560 1.00000i 1.00000i
561561 0 0
562562 2.00000 2.00000
563563 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
564564 0 0
565565 −0.500000 + 0.866025i −0.500000 + 0.866025i
566566 0 0
567567 −1.00000 −1.00000
568568 −0.500000 0.866025i −0.500000 0.866025i
569569 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
570570 0 0
571571 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
572572 0 0
573573 2.00000 2.00000
574574 −0.500000 0.866025i −0.500000 0.866025i
575575 0 0
576576 −0.500000 + 0.866025i −0.500000 + 0.866025i
577577 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0.500000 0.866025i 0.500000 0.866025i
583583 0 0
584584 0.866025 + 0.500000i 0.866025 + 0.500000i
585585 0 0
586586 −0.500000 0.866025i −0.500000 0.866025i
587587 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 −0.866025 + 0.500000i −0.866025 + 0.500000i
591591 −1.00000 −1.00000
592592 1.00000 1.00000
593593 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 1.00000 1.00000
596596 0 0
597597 0.866025 0.500000i 0.866025 0.500000i
598598 0 0
599599 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
600600 0 0
601601 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
602602 1.00000i 1.00000i
603603 0 0
604604 0 0
605605 1.00000i 1.00000i
606606 0 0
607607 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
608608 0 0
609609 −0.500000 + 0.866025i −0.500000 + 0.866025i
610610 0 0
611611 0 0
612612 0 0
613613 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
614614 0 0
615615 −0.866025 + 0.500000i −0.866025 + 0.500000i
616616 0 0
617617 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
618618 0.500000 0.866025i 0.500000 0.866025i
619619 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
620620 0 0
621621 1.00000 1.00000
622622 −0.500000 + 0.866025i −0.500000 + 0.866025i
623623 0.866025 + 0.500000i 0.866025 + 0.500000i
624624 0 0
625625 0.500000 + 0.866025i 0.500000 + 0.866025i
626626 −0.866025 + 0.500000i −0.866025 + 0.500000i
627627 0 0
628628 0 0
629629 1.00000i 1.00000i
630630 0.500000 0.866025i 0.500000 0.866025i
631631 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
632632 0.866025 0.500000i 0.866025 0.500000i
633633 1.00000i 1.00000i
634634 −0.500000 0.866025i −0.500000 0.866025i
635635 1.00000i 1.00000i
636636 0 0
637637 0 0
638638 0 0
639639 1.00000i 1.00000i
640640 −0.500000 0.866025i −0.500000 0.866025i
641641 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
642642 0.866025 0.500000i 0.866025 0.500000i
643643 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
644644 0 0
645645 −1.00000 −1.00000
646646 0 0
647647 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
648648 0.866025 0.500000i 0.866025 0.500000i
649649 0 0
650650 0 0
651651 0.866025 + 0.500000i 0.866025 + 0.500000i
652652 0 0
653653 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
654654 1.00000 1.00000
655655 0.500000 0.866025i 0.500000 0.866025i
656656 0.866025 + 0.500000i 0.866025 + 0.500000i
657657 −0.500000 0.866025i −0.500000 0.866025i
658658 1.00000 1.00000
659659 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
660660 0 0
661661 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 −0.866025 0.500000i −0.866025 0.500000i
667667 0.500000 0.866025i 0.500000 0.866025i
668668 0 0
669669 1.00000i 1.00000i
670670 0 0
671671 0 0
672672 0 0
673673 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
674674 0 0
675675 0 0
676676 0 0
677677 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
678678 −0.866025 0.500000i −0.866025 0.500000i
679679 −1.00000 −1.00000
680680 −0.866025 + 0.500000i −0.866025 + 0.500000i
681681 0.500000 + 0.866025i 0.500000 + 0.866025i
682682 0 0
683683 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
684684 0 0
685685 −0.500000 0.866025i −0.500000 0.866025i
686686 1.00000i 1.00000i
687687 0.866025 + 0.500000i 0.866025 + 0.500000i
688688 0.500000 + 0.866025i 0.500000 + 0.866025i
689689 0 0
690690 −0.500000 + 0.866025i −0.500000 + 0.866025i
691691 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
692692 0 0
693693 0 0
694694 1.00000 1.00000
695695 0.866025 + 0.500000i 0.866025 + 0.500000i
696696 1.00000i 1.00000i
697697 0.500000 0.866025i 0.500000 0.866025i
698698 −0.866025 0.500000i −0.866025 0.500000i
699699 −0.500000 + 0.866025i −0.500000 + 0.866025i
700700 0 0
701701 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
702702 0 0
703703 0 0
704704 0 0
705705 1.00000i 1.00000i
706706 0 0
707707 0 0
708708 0 0
709709 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
710710 −0.866025 0.500000i −0.866025 0.500000i
711711 −1.00000 −1.00000
712712 −1.00000 −1.00000
713713 −0.866025 0.500000i −0.866025 0.500000i
714714 1.00000i 1.00000i
715715 0 0
716716 0 0
717717 0 0
718718 0.500000 + 0.866025i 0.500000 + 0.866025i
719719 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
720720 1.00000i 1.00000i
721721 −1.00000 −1.00000
722722 −0.866025 + 0.500000i −0.866025 + 0.500000i
723723 −0.866025 + 0.500000i −0.866025 + 0.500000i
724724 0 0
725725 0 0
726726 −1.00000 −1.00000
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 −1.00000 −1.00000
730730 1.00000 1.00000
731731 0.866025 0.500000i 0.866025 0.500000i
732732 0 0
733733 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
734734 0 0
735735 −1.00000 −1.00000
736736 0 0
737737 0 0
738738 −0.500000 0.866025i −0.500000 0.866025i
739739 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
740740 0 0
741741 0 0
742742 0.500000 + 0.866025i 0.500000 + 0.866025i
743743 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
744744 −1.00000 −1.00000
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 −0.866025 0.500000i −0.866025 0.500000i
750750 −0.866025 + 0.500000i −0.866025 + 0.500000i
751751 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
752752 −0.866025 + 0.500000i −0.866025 + 0.500000i
753753 −0.500000 + 0.866025i −0.500000 + 0.866025i
754754 0 0
755755 1.00000i 1.00000i
756756 0 0
757757 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
758758 0.866025 + 0.500000i 0.866025 + 0.500000i
759759 0 0
760760 0 0
761761 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 1.00000 1.00000
763763 −0.500000 0.866025i −0.500000 0.866025i
764764 0 0
765765 1.00000 1.00000
766766 0 0
767767 0 0
768768 0 0
769769 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
770770 0 0
771771 −0.500000 0.866025i −0.500000 0.866025i
772772 0 0
773773 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
774774 1.00000i 1.00000i
775775 0 0
776776 0.866025 0.500000i 0.866025 0.500000i
777777 1.00000i 1.00000i
778778 0.500000 0.866025i 0.500000 0.866025i
779779 0 0
780780 0 0
781781 0 0
782782 1.00000i 1.00000i
783783 −0.500000 + 0.866025i −0.500000 + 0.866025i
784784 0.500000 + 0.866025i 0.500000 + 0.866025i
785785 1.00000i 1.00000i
786786 0.866025 + 0.500000i 0.866025 + 0.500000i
787787 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
788788 0 0
789789 0 0
790790 0.500000 0.866025i 0.500000 0.866025i
791791 1.00000i 1.00000i
792792 0 0
793793 0 0
794794 0 0
795795 0.866025 0.500000i 0.866025 0.500000i
796796 0 0
797797 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
798798 0 0
799799 0.500000 + 0.866025i 0.500000 + 0.866025i
800800 0 0
801801 0.866025 + 0.500000i 0.866025 + 0.500000i
802802 −1.00000 −1.00000
803803 0 0
804804 0 0
805805 1.00000 1.00000
806806 0 0
807807 0.500000 + 0.866025i 0.500000 + 0.866025i
808808 0 0
809809 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
810810 0.500000 0.866025i 0.500000 0.866025i
811811 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
812812 0 0
813813 0.866025 0.500000i 0.866025 0.500000i
814814 0 0
815815 0 0
816816 −0.500000 0.866025i −0.500000 0.866025i
817817 0 0
818818 1.00000i 1.00000i
819819 0 0
820820 0 0
821821 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
822822 0.866025 0.500000i 0.866025 0.500000i
823823 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
824824 0.866025 0.500000i 0.866025 0.500000i
825825 0 0
826826 −0.500000 + 0.866025i −0.500000 + 0.866025i
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
830830 0 0
831831 0.866025 0.500000i 0.866025 0.500000i
832832 0 0
833833 0.866025 0.500000i 0.866025 0.500000i
834834 −0.500000 + 0.866025i −0.500000 + 0.866025i
835835 1.00000 1.00000
836836 0 0
837837 0.866025 + 0.500000i 0.866025 + 0.500000i
838838 −0.500000 + 0.866025i −0.500000 + 0.866025i
839839 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
840840 0.866025 0.500000i 0.866025 0.500000i
841841 0 0
842842 0 0
843843 −1.00000 1.73205i −1.00000 1.73205i
844844 0 0
845845 0 0
846846 1.00000 1.00000
847847 0.500000 + 0.866025i 0.500000 + 0.866025i
848848 −0.866025 0.500000i −0.866025 0.500000i
849849 0 0
850850 0 0
851851 1.00000i 1.00000i
852852 0 0
853853 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
854854 0 0
855855 0 0
856856 1.00000 1.00000
857857 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
858858 0 0
859859 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
860860 0 0
861861 −0.500000 + 0.866025i −0.500000 + 0.866025i
862862 1.00000 + 1.73205i 1.00000 + 1.73205i
863863 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
864864 0 0
865865 0 0
866866 0.866025 0.500000i 0.866025 0.500000i
867867 0 0
868868 0 0
869869 0 0
870870 −0.500000 0.866025i −0.500000 0.866025i
871871 0 0
872872 0.866025 + 0.500000i 0.866025 + 0.500000i
873873 −1.00000 −1.00000
874874 0 0
875875 0.866025 + 0.500000i 0.866025 + 0.500000i
876876 0 0
877877 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
878878 1.00000i 1.00000i
879879 −0.500000 + 0.866025i −0.500000 + 0.866025i
880880 0 0
881881 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
882882 1.00000i 1.00000i
883883 2.00000 2.00000 1.00000 00
1.00000 00
884884 0 0
885885 0.866025 + 0.500000i 0.866025 + 0.500000i
886886 −0.500000 0.866025i −0.500000 0.866025i
887887 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
888888 −0.500000 0.866025i −0.500000 0.866025i
889889 −0.500000 0.866025i −0.500000 0.866025i
890890 −0.866025 + 0.500000i −0.866025 + 0.500000i
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 −0.866025 0.500000i −0.866025 0.500000i
897897 0 0
898898 −0.500000 0.866025i −0.500000 0.866025i
899899 0.866025 0.500000i 0.866025 0.500000i
900900 0 0
901901 −0.500000 + 0.866025i −0.500000 + 0.866025i
902902 0 0
903903 −0.866025 + 0.500000i −0.866025 + 0.500000i
904904 −0.500000 0.866025i −0.500000 0.866025i
905905 0 0
906906 1.00000 1.00000
907907 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 1.00000i 1.00000i
915915 0 0
916916 0 0
917917 1.00000i 1.00000i
918918 1.00000i 1.00000i
919919 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
920920 −0.866025 + 0.500000i −0.866025 + 0.500000i
921921 0 0
922922 0.500000 + 0.866025i 0.500000 + 0.866025i
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 −1.00000 −1.00000
928928 0 0
929929 −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 0.500000i 0.833333π-0.833333\pi
930930 −0.866025 + 0.500000i −0.866025 + 0.500000i
931931 0 0
932932 0 0
933933 1.00000 1.00000
934934 −0.500000 0.866025i −0.500000 0.866025i
935935 0 0
936936 0 0
937937 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 0.866025 + 0.500000i 0.866025 + 0.500000i
940940 0 0
941941 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
942942 −1.00000 −1.00000
943943 0.500000 0.866025i 0.500000 0.866025i
944944 1.00000i 1.00000i
945945 −1.00000 −1.00000
946946 0 0
947947 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
948948 0 0
949949 0 0
950950 0 0
951951 −0.500000 + 0.866025i −0.500000 + 0.866025i
952952 −0.500000 + 0.866025i −0.500000 + 0.866025i
953953 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
954954 0.500000 + 0.866025i 0.500000 + 0.866025i
955955 2.00000 2.00000
956956 0 0
957957 0 0
958958 0 0
959959 −0.866025 0.500000i −0.866025 0.500000i
960960 −0.500000 + 0.866025i −0.500000 + 0.866025i
961961 0 0
962962 0 0
963963 −0.866025 0.500000i −0.866025 0.500000i
964964 0 0
965965 0 0
966966 1.00000i 1.00000i
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 −0.866025 0.500000i −0.866025 0.500000i
969969 0 0
970970 0.500000 0.866025i 0.500000 0.866025i
971971 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
972972 0 0
973973 1.00000 1.00000
974974 1.00000i 1.00000i
975975 0 0
976976 0 0
977977 −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i 0.833333π0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
978978 0 0
979979 0 0
980980 0 0
981981 −0.500000 0.866025i −0.500000 0.866025i
982982 0.500000 0.866025i 0.500000 0.866025i
983983 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
984984 1.00000i 1.00000i
985985 −1.00000 −1.00000
986986 0.866025 + 0.500000i 0.866025 + 0.500000i
987987 −0.500000 0.866025i −0.500000 0.866025i
988988 0 0
989989 0.866025 0.500000i 0.866025 0.500000i
990990 0 0
991991 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
992992 0 0
993993 0 0
994994 −1.00000 −1.00000
995995 0.866025 0.500000i 0.866025 0.500000i
996996 0 0
997997 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
998998 −0.866025 + 0.500000i −0.866025 + 0.500000i
999999 1.00000i 1.00000i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3549.1.s.b.1712.2 4
3.2 odd 2 inner 3549.1.s.b.1712.1 4
7.2 even 3 3549.1.bm.c.191.2 4
13.2 odd 12 3549.1.x.b.1544.2 4
13.3 even 3 3549.1.bm.c.2174.1 4
13.4 even 6 3549.1.bk.d.1691.1 4
13.5 odd 4 3549.1.bp.d.2006.2 4
13.6 odd 12 3549.1.w.c.2027.1 4
13.7 odd 12 3549.1.w.e.2027.1 4
13.8 odd 4 3549.1.bp.b.2006.2 4
13.9 even 3 3549.1.bk.c.1691.2 4
13.10 even 6 273.1.bm.b.263.2 yes 4
13.11 odd 12 3549.1.x.d.1544.2 4
13.12 even 2 273.1.s.b.74.1 4
21.2 odd 6 3549.1.bm.c.191.1 4
39.2 even 12 3549.1.x.d.1544.1 4
39.5 even 4 3549.1.bp.b.2006.1 4
39.8 even 4 3549.1.bp.d.2006.1 4
39.11 even 12 3549.1.x.b.1544.1 4
39.17 odd 6 3549.1.bk.d.1691.2 4
39.20 even 12 3549.1.w.c.2027.2 4
39.23 odd 6 273.1.bm.b.263.1 yes 4
39.29 odd 6 3549.1.bm.c.2174.2 4
39.32 even 12 3549.1.w.e.2027.2 4
39.35 odd 6 3549.1.bk.c.1691.1 4
39.38 odd 2 273.1.s.b.74.2 yes 4
91.2 odd 12 3549.1.bp.d.23.1 4
91.9 even 3 3549.1.bk.c.170.1 4
91.10 odd 6 1911.1.be.d.1667.1 4
91.12 odd 6 1911.1.bm.b.1010.1 4
91.16 even 3 inner 3549.1.s.b.653.2 4
91.23 even 6 273.1.s.b.107.1 yes 4
91.25 even 6 1911.1.be.c.932.2 4
91.30 even 6 3549.1.bk.d.170.2 4
91.37 odd 12 3549.1.bp.b.23.1 4
91.38 odd 6 1911.1.be.d.932.2 4
91.44 odd 12 3549.1.x.b.485.2 4
91.51 even 6 273.1.bm.b.191.1 yes 4
91.58 odd 12 3549.1.w.c.506.2 4
91.62 odd 6 1911.1.bm.b.263.2 4
91.72 odd 12 3549.1.w.e.506.2 4
91.75 odd 6 1911.1.s.b.1745.1 4
91.86 odd 12 3549.1.x.d.485.2 4
91.88 even 6 1911.1.be.c.1667.1 4
91.90 odd 2 1911.1.s.b.1439.1 4
273.2 even 12 3549.1.bp.b.23.2 4
273.23 odd 6 273.1.s.b.107.2 yes 4
273.38 even 6 1911.1.be.d.932.1 4
273.44 even 12 3549.1.x.d.485.1 4
273.62 even 6 1911.1.bm.b.263.1 4
273.86 even 12 3549.1.x.b.485.1 4
273.101 even 6 1911.1.be.d.1667.2 4
273.107 odd 6 inner 3549.1.s.b.653.1 4
273.116 odd 6 1911.1.be.c.932.1 4
273.128 even 12 3549.1.bp.d.23.2 4
273.149 even 12 3549.1.w.e.506.1 4
273.179 odd 6 1911.1.be.c.1667.2 4
273.191 odd 6 3549.1.bk.c.170.2 4
273.194 even 6 1911.1.bm.b.1010.2 4
273.212 odd 6 3549.1.bk.d.170.1 4
273.233 odd 6 273.1.bm.b.191.2 yes 4
273.254 even 12 3549.1.w.c.506.1 4
273.257 even 6 1911.1.s.b.1745.2 4
273.272 even 2 1911.1.s.b.1439.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.1.s.b.74.1 4 13.12 even 2
273.1.s.b.74.2 yes 4 39.38 odd 2
273.1.s.b.107.1 yes 4 91.23 even 6
273.1.s.b.107.2 yes 4 273.23 odd 6
273.1.bm.b.191.1 yes 4 91.51 even 6
273.1.bm.b.191.2 yes 4 273.233 odd 6
273.1.bm.b.263.1 yes 4 39.23 odd 6
273.1.bm.b.263.2 yes 4 13.10 even 6
1911.1.s.b.1439.1 4 91.90 odd 2
1911.1.s.b.1439.2 4 273.272 even 2
1911.1.s.b.1745.1 4 91.75 odd 6
1911.1.s.b.1745.2 4 273.257 even 6
1911.1.be.c.932.1 4 273.116 odd 6
1911.1.be.c.932.2 4 91.25 even 6
1911.1.be.c.1667.1 4 91.88 even 6
1911.1.be.c.1667.2 4 273.179 odd 6
1911.1.be.d.932.1 4 273.38 even 6
1911.1.be.d.932.2 4 91.38 odd 6
1911.1.be.d.1667.1 4 91.10 odd 6
1911.1.be.d.1667.2 4 273.101 even 6
1911.1.bm.b.263.1 4 273.62 even 6
1911.1.bm.b.263.2 4 91.62 odd 6
1911.1.bm.b.1010.1 4 91.12 odd 6
1911.1.bm.b.1010.2 4 273.194 even 6
3549.1.s.b.653.1 4 273.107 odd 6 inner
3549.1.s.b.653.2 4 91.16 even 3 inner
3549.1.s.b.1712.1 4 3.2 odd 2 inner
3549.1.s.b.1712.2 4 1.1 even 1 trivial
3549.1.w.c.506.1 4 273.254 even 12
3549.1.w.c.506.2 4 91.58 odd 12
3549.1.w.c.2027.1 4 13.6 odd 12
3549.1.w.c.2027.2 4 39.20 even 12
3549.1.w.e.506.1 4 273.149 even 12
3549.1.w.e.506.2 4 91.72 odd 12
3549.1.w.e.2027.1 4 13.7 odd 12
3549.1.w.e.2027.2 4 39.32 even 12
3549.1.x.b.485.1 4 273.86 even 12
3549.1.x.b.485.2 4 91.44 odd 12
3549.1.x.b.1544.1 4 39.11 even 12
3549.1.x.b.1544.2 4 13.2 odd 12
3549.1.x.d.485.1 4 273.44 even 12
3549.1.x.d.485.2 4 91.86 odd 12
3549.1.x.d.1544.1 4 39.2 even 12
3549.1.x.d.1544.2 4 13.11 odd 12
3549.1.bk.c.170.1 4 91.9 even 3
3549.1.bk.c.170.2 4 273.191 odd 6
3549.1.bk.c.1691.1 4 39.35 odd 6
3549.1.bk.c.1691.2 4 13.9 even 3
3549.1.bk.d.170.1 4 273.212 odd 6
3549.1.bk.d.170.2 4 91.30 even 6
3549.1.bk.d.1691.1 4 13.4 even 6
3549.1.bk.d.1691.2 4 39.17 odd 6
3549.1.bm.c.191.1 4 21.2 odd 6
3549.1.bm.c.191.2 4 7.2 even 3
3549.1.bm.c.2174.1 4 13.3 even 3
3549.1.bm.c.2174.2 4 39.29 odd 6
3549.1.bp.b.23.1 4 91.37 odd 12
3549.1.bp.b.23.2 4 273.2 even 12
3549.1.bp.b.2006.1 4 39.5 even 4
3549.1.bp.b.2006.2 4 13.8 odd 4
3549.1.bp.d.23.1 4 91.2 odd 12
3549.1.bp.d.23.2 4 273.128 even 12
3549.1.bp.d.2006.1 4 39.8 even 4
3549.1.bp.d.2006.2 4 13.5 odd 4