L(s) = 1 | + i·2-s + (0.866 − 0.5i)3-s + (0.866 − 0.5i)5-s + (0.5 + 0.866i)6-s + (0.5 − 0.866i)7-s + i·8-s + (0.499 − 0.866i)9-s + (0.5 + 0.866i)10-s + (0.866 + 0.5i)14-s + (0.499 − 0.866i)15-s − 16-s + i·17-s + (0.866 + 0.499i)18-s − 0.999i·21-s + i·23-s + (0.5 + 0.866i)24-s + ⋯ |
L(s) = 1 | + i·2-s + (0.866 − 0.5i)3-s + (0.866 − 0.5i)5-s + (0.5 + 0.866i)6-s + (0.5 − 0.866i)7-s + i·8-s + (0.499 − 0.866i)9-s + (0.5 + 0.866i)10-s + (0.866 + 0.5i)14-s + (0.499 − 0.866i)15-s − 16-s + i·17-s + (0.866 + 0.499i)18-s − 0.999i·21-s + i·23-s + (0.5 + 0.866i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.890 - 0.455i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.890 - 0.455i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.354163626\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.354163626\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 - iT - T^{2} \) |
| 5 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - iT - T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 - iT - T^{2} \) |
| 29 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 - iT - T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - iT - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.642301791507376077195996862089, −7.969545416473219135866105580918, −7.21356198534970528034432074353, −6.89762976894661481095198282728, −5.79685594964412561324847151107, −5.38620608056053054488089033824, −4.22445639357641663119973548974, −3.35928859827508056602516124980, −1.96861395291925751262698103846, −1.55626075593631418698067638373,
1.64386588921025527059791694418, 2.34852067084276385749236677723, 2.82727628237077085975365676158, 3.72600083861810348519052152335, 4.72826686179399511543001592120, 5.52457752889568522291791341764, 6.50272159461540931910327404944, 7.25029354575051837693259463267, 8.164161465233552998286858413943, 8.991467412249484123187020495466