L(s) = 1 | + 0.470·2-s + 3-s − 1.77·4-s + 0.529·5-s + 0.470·6-s + 7-s − 1.77·8-s + 9-s + 0.249·10-s + 4.77·11-s − 1.77·12-s + 5.02·13-s + 0.470·14-s + 0.529·15-s + 2.71·16-s + 17-s + 0.470·18-s − 1.47·19-s − 0.941·20-s + 21-s + 2.24·22-s − 0.778·23-s − 1.77·24-s − 4.71·25-s + 2.36·26-s + 27-s − 1.77·28-s + ⋯ |
L(s) = 1 | + 0.332·2-s + 0.577·3-s − 0.889·4-s + 0.236·5-s + 0.192·6-s + 0.377·7-s − 0.628·8-s + 0.333·9-s + 0.0787·10-s + 1.44·11-s − 0.513·12-s + 1.39·13-s + 0.125·14-s + 0.136·15-s + 0.679·16-s + 0.242·17-s + 0.110·18-s − 0.337·19-s − 0.210·20-s + 0.218·21-s + 0.479·22-s − 0.162·23-s − 0.363·24-s − 0.943·25-s + 0.464·26-s + 0.192·27-s − 0.336·28-s + ⋯ |
Λ(s)=(=(357s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(357s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.788294337 |
L(21) |
≈ |
1.788294337 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 7 | 1−T |
| 17 | 1−T |
good | 2 | 1−0.470T+2T2 |
| 5 | 1−0.529T+5T2 |
| 11 | 1−4.77T+11T2 |
| 13 | 1−5.02T+13T2 |
| 19 | 1+1.47T+19T2 |
| 23 | 1+0.778T+23T2 |
| 29 | 1+3.55T+29T2 |
| 31 | 1+1.75T+31T2 |
| 37 | 1+9.80T+37T2 |
| 41 | 1−4.52T+41T2 |
| 43 | 1+2.66T+43T2 |
| 47 | 1+4.13T+47T2 |
| 53 | 1−13.2T+53T2 |
| 59 | 1+8.86T+59T2 |
| 61 | 1+12.7T+61T2 |
| 67 | 1−4.82T+67T2 |
| 71 | 1−11.9T+71T2 |
| 73 | 1+12.6T+73T2 |
| 79 | 1−3.30T+79T2 |
| 83 | 1−2.44T+83T2 |
| 89 | 1−8.05T+89T2 |
| 97 | 1−3.55T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.59485497294390259704713401527, −10.44978117422502264167856176870, −9.311964032565132756369545544178, −8.845872608504172513453441260467, −7.925336326812937879737117327477, −6.51658074289486414126472186181, −5.54158756840717382234083783981, −4.16104958825721235092395451518, −3.54178766549477272067615419805, −1.54369465786752064082182784273,
1.54369465786752064082182784273, 3.54178766549477272067615419805, 4.16104958825721235092395451518, 5.54158756840717382234083783981, 6.51658074289486414126472186181, 7.925336326812937879737117327477, 8.845872608504172513453441260467, 9.311964032565132756369545544178, 10.44978117422502264167856176870, 11.59485497294390259704713401527