Properties

Label 2-357-1.1-c1-0-4
Degree $2$
Conductor $357$
Sign $1$
Analytic cond. $2.85065$
Root an. cond. $1.68838$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.470·2-s + 3-s − 1.77·4-s + 0.529·5-s + 0.470·6-s + 7-s − 1.77·8-s + 9-s + 0.249·10-s + 4.77·11-s − 1.77·12-s + 5.02·13-s + 0.470·14-s + 0.529·15-s + 2.71·16-s + 17-s + 0.470·18-s − 1.47·19-s − 0.941·20-s + 21-s + 2.24·22-s − 0.778·23-s − 1.77·24-s − 4.71·25-s + 2.36·26-s + 27-s − 1.77·28-s + ⋯
L(s)  = 1  + 0.332·2-s + 0.577·3-s − 0.889·4-s + 0.236·5-s + 0.192·6-s + 0.377·7-s − 0.628·8-s + 0.333·9-s + 0.0787·10-s + 1.44·11-s − 0.513·12-s + 1.39·13-s + 0.125·14-s + 0.136·15-s + 0.679·16-s + 0.242·17-s + 0.110·18-s − 0.337·19-s − 0.210·20-s + 0.218·21-s + 0.479·22-s − 0.162·23-s − 0.363·24-s − 0.943·25-s + 0.464·26-s + 0.192·27-s − 0.336·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 357 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 357 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(357\)    =    \(3 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(2.85065\)
Root analytic conductor: \(1.68838\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 357,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.788294337\)
\(L(\frac12)\) \(\approx\) \(1.788294337\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 - T \)
good2 \( 1 - 0.470T + 2T^{2} \)
5 \( 1 - 0.529T + 5T^{2} \)
11 \( 1 - 4.77T + 11T^{2} \)
13 \( 1 - 5.02T + 13T^{2} \)
19 \( 1 + 1.47T + 19T^{2} \)
23 \( 1 + 0.778T + 23T^{2} \)
29 \( 1 + 3.55T + 29T^{2} \)
31 \( 1 + 1.75T + 31T^{2} \)
37 \( 1 + 9.80T + 37T^{2} \)
41 \( 1 - 4.52T + 41T^{2} \)
43 \( 1 + 2.66T + 43T^{2} \)
47 \( 1 + 4.13T + 47T^{2} \)
53 \( 1 - 13.2T + 53T^{2} \)
59 \( 1 + 8.86T + 59T^{2} \)
61 \( 1 + 12.7T + 61T^{2} \)
67 \( 1 - 4.82T + 67T^{2} \)
71 \( 1 - 11.9T + 71T^{2} \)
73 \( 1 + 12.6T + 73T^{2} \)
79 \( 1 - 3.30T + 79T^{2} \)
83 \( 1 - 2.44T + 83T^{2} \)
89 \( 1 - 8.05T + 89T^{2} \)
97 \( 1 - 3.55T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.59485497294390259704713401527, −10.44978117422502264167856176870, −9.311964032565132756369545544178, −8.845872608504172513453441260467, −7.925336326812937879737117327477, −6.51658074289486414126472186181, −5.54158756840717382234083783981, −4.16104958825721235092395451518, −3.54178766549477272067615419805, −1.54369465786752064082182784273, 1.54369465786752064082182784273, 3.54178766549477272067615419805, 4.16104958825721235092395451518, 5.54158756840717382234083783981, 6.51658074289486414126472186181, 7.925336326812937879737117327477, 8.845872608504172513453441260467, 9.311964032565132756369545544178, 10.44978117422502264167856176870, 11.59485497294390259704713401527

Graph of the $Z$-function along the critical line