Properties

Label 357.2.a.g
Level $357$
Weight $2$
Character orbit 357.a
Self dual yes
Analytic conductor $2.851$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [357,2,Mod(1,357)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(357, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("357.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 357 = 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 357.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.85065935216\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + q^{3} + (\beta_{2} + 1) q^{4} + ( - \beta_1 + 1) q^{5} + \beta_1 q^{6} + q^{7} + (\beta_{2} + 1) q^{8} + q^{9} + ( - \beta_{2} + \beta_1 - 3) q^{10} + ( - \beta_{2} + 2) q^{11} + (\beta_{2} + 1) q^{12}+ \cdots + ( - \beta_{2} + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + 3 q^{3} + 3 q^{4} + 2 q^{5} + q^{6} + 3 q^{7} + 3 q^{8} + 3 q^{9} - 8 q^{10} + 6 q^{11} + 3 q^{12} - 2 q^{13} + q^{14} + 2 q^{15} - q^{16} + 3 q^{17} + q^{18} - 4 q^{19} - 2 q^{20} + 3 q^{21}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.81361
0.470683
2.34292
−1.81361 1.00000 1.28917 2.81361 −1.81361 1.00000 1.28917 1.00000 −5.10278
1.2 0.470683 1.00000 −1.77846 0.529317 0.470683 1.00000 −1.77846 1.00000 0.249141
1.3 2.34292 1.00000 3.48929 −1.34292 2.34292 1.00000 3.48929 1.00000 −3.14637
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 357.2.a.g 3
3.b odd 2 1 1071.2.a.h 3
4.b odd 2 1 5712.2.a.bt 3
5.b even 2 1 8925.2.a.bm 3
7.b odd 2 1 2499.2.a.s 3
17.b even 2 1 6069.2.a.r 3
21.c even 2 1 7497.2.a.ba 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
357.2.a.g 3 1.a even 1 1 trivial
1071.2.a.h 3 3.b odd 2 1
2499.2.a.s 3 7.b odd 2 1
5712.2.a.bt 3 4.b odd 2 1
6069.2.a.r 3 17.b even 2 1
7497.2.a.ba 3 21.c even 2 1
8925.2.a.bm 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(357))\):

\( T_{2}^{3} - T_{2}^{2} - 4T_{2} + 2 \) Copy content Toggle raw display
\( T_{11}^{3} - 6T_{11}^{2} + 5T_{11} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - T^{2} - 4T + 2 \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 2 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$7$ \( (T - 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - 6 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$13$ \( T^{3} + 2 T^{2} + \cdots - 62 \) Copy content Toggle raw display
$17$ \( (T - 1)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} + 4T^{2} + T - 4 \) Copy content Toggle raw display
$23$ \( T^{3} - 6 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$29$ \( T^{3} - 6 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$31$ \( T^{3} + 14 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$37$ \( T^{3} + 4 T^{2} + \cdots + 68 \) Copy content Toggle raw display
$41$ \( T^{3} - 14 T^{2} + \cdots - 82 \) Copy content Toggle raw display
$43$ \( T^{3} - 2 T^{2} + \cdots - 124 \) Copy content Toggle raw display
$47$ \( T^{3} + 2 T^{2} + \cdots - 352 \) Copy content Toggle raw display
$53$ \( T^{3} + 4 T^{2} + \cdots - 668 \) Copy content Toggle raw display
$59$ \( T^{3} + 2 T^{2} + \cdots - 152 \) Copy content Toggle raw display
$61$ \( T^{3} + 12 T^{2} + \cdots - 108 \) Copy content Toggle raw display
$67$ \( T^{3} - 12 T^{2} + \cdots + 688 \) Copy content Toggle raw display
$71$ \( T^{3} - 172T + 352 \) Copy content Toggle raw display
$73$ \( T^{3} + 22 T^{2} + \cdots - 232 \) Copy content Toggle raw display
$79$ \( T^{3} - 2 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$83$ \( T^{3} - 24 T^{2} + \cdots - 272 \) Copy content Toggle raw display
$89$ \( T^{3} + 10 T^{2} + \cdots - 656 \) Copy content Toggle raw display
$97$ \( T^{3} + 6 T^{2} + \cdots - 64 \) Copy content Toggle raw display
show more
show less