L(s) = 1 | − 2.06·2-s − 3-s + 2.27·4-s − 0.238·5-s + 2.06·6-s + 7-s − 0.558·8-s + 9-s + 0.491·10-s − 5.40·11-s − 2.27·12-s + 0.238·13-s − 2.06·14-s + 0.238·15-s − 3.38·16-s − 17-s − 2.06·18-s + 7.89·19-s − 0.540·20-s − 21-s + 11.1·22-s + 6.38·23-s + 0.558·24-s − 4.94·25-s − 0.491·26-s − 27-s + 2.27·28-s + ⋯ |
L(s) = 1 | − 1.46·2-s − 0.577·3-s + 1.13·4-s − 0.106·5-s + 0.843·6-s + 0.377·7-s − 0.197·8-s + 0.333·9-s + 0.155·10-s − 1.62·11-s − 0.655·12-s + 0.0660·13-s − 0.552·14-s + 0.0614·15-s − 0.846·16-s − 0.242·17-s − 0.487·18-s + 1.81·19-s − 0.120·20-s − 0.218·21-s + 2.38·22-s + 1.33·23-s + 0.113·24-s − 0.988·25-s − 0.0964·26-s − 0.192·27-s + 0.429·28-s + ⋯ |
Λ(s)=(=(357s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(357s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.4990363148 |
L(21) |
≈ |
0.4990363148 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 7 | 1−T |
| 17 | 1+T |
good | 2 | 1+2.06T+2T2 |
| 5 | 1+0.238T+5T2 |
| 11 | 1+5.40T+11T2 |
| 13 | 1−0.238T+13T2 |
| 19 | 1−7.89T+19T2 |
| 23 | 1−6.38T+23T2 |
| 29 | 1−4.13T+29T2 |
| 31 | 1−6.18T+31T2 |
| 37 | 1−5.64T+37T2 |
| 41 | 1+6.30T+41T2 |
| 43 | 1−10.8T+43T2 |
| 47 | 1−6.18T+47T2 |
| 53 | 1−12.1T+53T2 |
| 59 | 1+4.14T+59T2 |
| 61 | 1+2.55T+61T2 |
| 67 | 1−5.45T+67T2 |
| 71 | 1−9.72T+71T2 |
| 73 | 1+14.9T+73T2 |
| 79 | 1+16.8T+79T2 |
| 83 | 1−5.45T+83T2 |
| 89 | 1+6.47T+89T2 |
| 97 | 1+2.06T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.18183079890896129994370095848, −10.39776777972413569729574069695, −9.738720151306175736757794837053, −8.660182292476093748064227815120, −7.73047959398978833843427895427, −7.18032724620857925640044392391, −5.68641473272541393924609196502, −4.67942543603881613674176278989, −2.65319336574567211412948083003, −0.903628635718627513723344422918,
0.903628635718627513723344422918, 2.65319336574567211412948083003, 4.67942543603881613674176278989, 5.68641473272541393924609196502, 7.18032724620857925640044392391, 7.73047959398978833843427895427, 8.660182292476093748064227815120, 9.738720151306175736757794837053, 10.39776777972413569729574069695, 11.18183079890896129994370095848