Properties

Label 357.2.a.h.1.1
Level $357$
Weight $2$
Character 357.1
Self dual yes
Analytic conductor $2.851$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [357,2,Mod(1,357)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(357, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("357.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 357 = 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 357.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.85065935216\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.7232.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 5x^{2} + 4x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.652223\) of defining polynomial
Character \(\chi\) \(=\) 357.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.06644 q^{2} -1.00000 q^{3} +2.27016 q^{4} -0.238009 q^{5} +2.06644 q^{6} +1.00000 q^{7} -0.558268 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-2.06644 q^{2} -1.00000 q^{3} +2.27016 q^{4} -0.238009 q^{5} +2.06644 q^{6} +1.00000 q^{7} -0.558268 q^{8} +1.00000 q^{9} +0.491831 q^{10} -5.40303 q^{11} -2.27016 q^{12} +0.238009 q^{13} -2.06644 q^{14} +0.238009 q^{15} -3.38669 q^{16} -1.00000 q^{17} -2.06644 q^{18} +7.89486 q^{19} -0.540319 q^{20} -1.00000 q^{21} +11.1650 q^{22} +6.38669 q^{23} +0.558268 q^{24} -4.94335 q^{25} -0.491831 q^{26} -1.00000 q^{27} +2.27016 q^{28} +4.13287 q^{29} -0.491831 q^{30} +6.18136 q^{31} +8.11492 q^{32} +5.40303 q^{33} +2.06644 q^{34} -0.238009 q^{35} +2.27016 q^{36} +5.64104 q^{37} -16.3142 q^{38} -0.238009 q^{39} +0.132873 q^{40} -6.30231 q^{41} +2.06644 q^{42} +10.8627 q^{43} -12.2657 q^{44} -0.238009 q^{45} -13.1977 q^{46} +6.18136 q^{47} +3.38669 q^{48} +1.00000 q^{49} +10.2151 q^{50} +1.00000 q^{51} +0.540319 q^{52} +12.1814 q^{53} +2.06644 q^{54} +1.28597 q^{55} -0.558268 q^{56} -7.89486 q^{57} -8.54032 q^{58} -4.14869 q^{59} +0.540319 q^{60} -2.55613 q^{61} -12.7734 q^{62} +1.00000 q^{63} -9.99559 q^{64} -0.0566484 q^{65} -11.1650 q^{66} +5.45968 q^{67} -2.27016 q^{68} -6.38669 q^{69} +0.491831 q^{70} +9.72543 q^{71} -0.558268 q^{72} -14.9389 q^{73} -11.6569 q^{74} +4.94335 q^{75} +17.9226 q^{76} -5.40303 q^{77} +0.491831 q^{78} -16.8904 q^{79} +0.806065 q^{80} +1.00000 q^{81} +13.0233 q^{82} +5.45968 q^{83} -2.27016 q^{84} +0.238009 q^{85} -22.4471 q^{86} -4.13287 q^{87} +3.01634 q^{88} -6.47602 q^{89} +0.491831 q^{90} +0.238009 q^{91} +14.4988 q^{92} -6.18136 q^{93} -12.7734 q^{94} -1.87905 q^{95} -8.11492 q^{96} -2.06857 q^{97} -2.06644 q^{98} -5.40303 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 4 q^{3} + 6 q^{4} - 2 q^{5} - 2 q^{6} + 4 q^{7} + 6 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{2} - 4 q^{3} + 6 q^{4} - 2 q^{5} - 2 q^{6} + 4 q^{7} + 6 q^{8} + 4 q^{9} + 4 q^{10} + 2 q^{11} - 6 q^{12} + 2 q^{13} + 2 q^{14} + 2 q^{15} + 6 q^{16} - 4 q^{17} + 2 q^{18} + 10 q^{19} + 4 q^{20} - 4 q^{21} + 20 q^{22} + 6 q^{23} - 6 q^{24} + 10 q^{25} - 4 q^{26} - 4 q^{27} + 6 q^{28} - 4 q^{29} - 4 q^{30} - 4 q^{31} + 14 q^{32} - 2 q^{33} - 2 q^{34} - 2 q^{35} + 6 q^{36} - 16 q^{38} - 2 q^{39} - 20 q^{40} - 18 q^{41} - 2 q^{42} + 26 q^{43} - 8 q^{44} - 2 q^{45} - 20 q^{46} - 4 q^{47} - 6 q^{48} + 4 q^{49} + 10 q^{50} + 4 q^{51} - 4 q^{52} + 20 q^{53} - 2 q^{54} + 2 q^{55} + 6 q^{56} - 10 q^{57} - 28 q^{58} + 4 q^{59} - 4 q^{60} - 4 q^{61} - 12 q^{62} + 4 q^{63} - 2 q^{64} - 30 q^{65} - 20 q^{66} + 28 q^{67} - 6 q^{68} - 6 q^{69} + 4 q^{70} + 4 q^{71} + 6 q^{72} + 8 q^{73} - 24 q^{74} - 10 q^{75} + 8 q^{76} + 2 q^{77} + 4 q^{78} - 8 q^{79} - 44 q^{80} + 4 q^{81} - 28 q^{82} + 28 q^{83} - 6 q^{84} + 2 q^{85} - 20 q^{86} + 4 q^{87} + 8 q^{88} - 28 q^{89} + 4 q^{90} + 2 q^{91} - 16 q^{92} + 4 q^{93} - 12 q^{94} + 14 q^{95} - 14 q^{96} + 4 q^{97} + 2 q^{98} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.06644 −1.46119 −0.730596 0.682810i \(-0.760757\pi\)
−0.730596 + 0.682810i \(0.760757\pi\)
\(3\) −1.00000 −0.577350
\(4\) 2.27016 1.13508
\(5\) −0.238009 −0.106441 −0.0532205 0.998583i \(-0.516949\pi\)
−0.0532205 + 0.998583i \(0.516949\pi\)
\(6\) 2.06644 0.843619
\(7\) 1.00000 0.377964
\(8\) −0.558268 −0.197377
\(9\) 1.00000 0.333333
\(10\) 0.491831 0.155531
\(11\) −5.40303 −1.62908 −0.814538 0.580110i \(-0.803009\pi\)
−0.814538 + 0.580110i \(0.803009\pi\)
\(12\) −2.27016 −0.655339
\(13\) 0.238009 0.0660119 0.0330060 0.999455i \(-0.489492\pi\)
0.0330060 + 0.999455i \(0.489492\pi\)
\(14\) −2.06644 −0.552278
\(15\) 0.238009 0.0614537
\(16\) −3.38669 −0.846674
\(17\) −1.00000 −0.242536
\(18\) −2.06644 −0.487064
\(19\) 7.89486 1.81121 0.905603 0.424126i \(-0.139419\pi\)
0.905603 + 0.424126i \(0.139419\pi\)
\(20\) −0.540319 −0.120819
\(21\) −1.00000 −0.218218
\(22\) 11.1650 2.38039
\(23\) 6.38669 1.33172 0.665859 0.746078i \(-0.268065\pi\)
0.665859 + 0.746078i \(0.268065\pi\)
\(24\) 0.558268 0.113956
\(25\) −4.94335 −0.988670
\(26\) −0.491831 −0.0964560
\(27\) −1.00000 −0.192450
\(28\) 2.27016 0.429020
\(29\) 4.13287 0.767455 0.383728 0.923446i \(-0.374640\pi\)
0.383728 + 0.923446i \(0.374640\pi\)
\(30\) −0.491831 −0.0897957
\(31\) 6.18136 1.11021 0.555103 0.831782i \(-0.312679\pi\)
0.555103 + 0.831782i \(0.312679\pi\)
\(32\) 8.11492 1.43453
\(33\) 5.40303 0.940547
\(34\) 2.06644 0.354391
\(35\) −0.238009 −0.0402309
\(36\) 2.27016 0.378360
\(37\) 5.64104 0.927382 0.463691 0.885997i \(-0.346525\pi\)
0.463691 + 0.885997i \(0.346525\pi\)
\(38\) −16.3142 −2.64652
\(39\) −0.238009 −0.0381120
\(40\) 0.132873 0.0210090
\(41\) −6.30231 −0.984255 −0.492128 0.870523i \(-0.663781\pi\)
−0.492128 + 0.870523i \(0.663781\pi\)
\(42\) 2.06644 0.318858
\(43\) 10.8627 1.65655 0.828274 0.560323i \(-0.189323\pi\)
0.828274 + 0.560323i \(0.189323\pi\)
\(44\) −12.2657 −1.84913
\(45\) −0.238009 −0.0354803
\(46\) −13.1977 −1.94589
\(47\) 6.18136 0.901644 0.450822 0.892614i \(-0.351131\pi\)
0.450822 + 0.892614i \(0.351131\pi\)
\(48\) 3.38669 0.488827
\(49\) 1.00000 0.142857
\(50\) 10.2151 1.44464
\(51\) 1.00000 0.140028
\(52\) 0.540319 0.0749288
\(53\) 12.1814 1.67324 0.836619 0.547785i \(-0.184529\pi\)
0.836619 + 0.547785i \(0.184529\pi\)
\(54\) 2.06644 0.281206
\(55\) 1.28597 0.173400
\(56\) −0.558268 −0.0746016
\(57\) −7.89486 −1.04570
\(58\) −8.54032 −1.12140
\(59\) −4.14869 −0.540113 −0.270056 0.962845i \(-0.587042\pi\)
−0.270056 + 0.962845i \(0.587042\pi\)
\(60\) 0.540319 0.0697549
\(61\) −2.55613 −0.327279 −0.163640 0.986520i \(-0.552323\pi\)
−0.163640 + 0.986520i \(0.552323\pi\)
\(62\) −12.7734 −1.62222
\(63\) 1.00000 0.125988
\(64\) −9.99559 −1.24945
\(65\) −0.0566484 −0.00702637
\(66\) −11.1650 −1.37432
\(67\) 5.45968 0.667006 0.333503 0.942749i \(-0.391769\pi\)
0.333503 + 0.942749i \(0.391769\pi\)
\(68\) −2.27016 −0.275297
\(69\) −6.38669 −0.768868
\(70\) 0.491831 0.0587851
\(71\) 9.72543 1.15420 0.577098 0.816675i \(-0.304185\pi\)
0.577098 + 0.816675i \(0.304185\pi\)
\(72\) −0.558268 −0.0657925
\(73\) −14.9389 −1.74847 −0.874235 0.485503i \(-0.838637\pi\)
−0.874235 + 0.485503i \(0.838637\pi\)
\(74\) −11.6569 −1.35508
\(75\) 4.94335 0.570809
\(76\) 17.9226 2.05586
\(77\) −5.40303 −0.615733
\(78\) 0.491831 0.0556889
\(79\) −16.8904 −1.90032 −0.950162 0.311756i \(-0.899083\pi\)
−0.950162 + 0.311756i \(0.899083\pi\)
\(80\) 0.806065 0.0901208
\(81\) 1.00000 0.111111
\(82\) 13.0233 1.43819
\(83\) 5.45968 0.599278 0.299639 0.954053i \(-0.403134\pi\)
0.299639 + 0.954053i \(0.403134\pi\)
\(84\) −2.27016 −0.247695
\(85\) 0.238009 0.0258157
\(86\) −22.4471 −2.42053
\(87\) −4.13287 −0.443090
\(88\) 3.01634 0.321543
\(89\) −6.47602 −0.686457 −0.343228 0.939252i \(-0.611520\pi\)
−0.343228 + 0.939252i \(0.611520\pi\)
\(90\) 0.491831 0.0518436
\(91\) 0.238009 0.0249502
\(92\) 14.4988 1.51161
\(93\) −6.18136 −0.640977
\(94\) −12.7734 −1.31747
\(95\) −1.87905 −0.192787
\(96\) −8.11492 −0.828226
\(97\) −2.06857 −0.210032 −0.105016 0.994471i \(-0.533489\pi\)
−0.105016 + 0.994471i \(0.533489\pi\)
\(98\) −2.06644 −0.208742
\(99\) −5.40303 −0.543025
\(100\) −11.2222 −1.12222
\(101\) 9.43077 0.938397 0.469198 0.883093i \(-0.344543\pi\)
0.469198 + 0.883093i \(0.344543\pi\)
\(102\) −2.06644 −0.204608
\(103\) −8.46786 −0.834363 −0.417181 0.908823i \(-0.636982\pi\)
−0.417181 + 0.908823i \(0.636982\pi\)
\(104\) −0.132873 −0.0130293
\(105\) 0.238009 0.0232273
\(106\) −25.1720 −2.44492
\(107\) 15.4673 1.49528 0.747642 0.664102i \(-0.231186\pi\)
0.747642 + 0.664102i \(0.231186\pi\)
\(108\) −2.27016 −0.218446
\(109\) 1.37530 0.131729 0.0658647 0.997829i \(-0.479019\pi\)
0.0658647 + 0.997829i \(0.479019\pi\)
\(110\) −2.65738 −0.253371
\(111\) −5.64104 −0.535424
\(112\) −3.38669 −0.320013
\(113\) 10.6165 0.998720 0.499360 0.866394i \(-0.333568\pi\)
0.499360 + 0.866394i \(0.333568\pi\)
\(114\) 16.3142 1.52797
\(115\) −1.52009 −0.141749
\(116\) 9.38228 0.871123
\(117\) 0.238009 0.0220040
\(118\) 8.57299 0.789208
\(119\) −1.00000 −0.0916698
\(120\) −0.132873 −0.0121296
\(121\) 18.1928 1.65389
\(122\) 5.28208 0.478217
\(123\) 6.30231 0.568260
\(124\) 14.0327 1.26017
\(125\) 2.36661 0.211676
\(126\) −2.06644 −0.184093
\(127\) −2.38669 −0.211785 −0.105892 0.994378i \(-0.533770\pi\)
−0.105892 + 0.994378i \(0.533770\pi\)
\(128\) 4.42539 0.391153
\(129\) −10.8627 −0.956409
\(130\) 0.117060 0.0102669
\(131\) −13.0757 −1.14243 −0.571215 0.820801i \(-0.693528\pi\)
−0.571215 + 0.820801i \(0.693528\pi\)
\(132\) 12.2657 1.06760
\(133\) 7.89486 0.684571
\(134\) −11.2821 −0.974624
\(135\) 0.238009 0.0204846
\(136\) 0.558268 0.0478710
\(137\) −6.24566 −0.533603 −0.266801 0.963752i \(-0.585967\pi\)
−0.266801 + 0.963752i \(0.585967\pi\)
\(138\) 13.1977 1.12346
\(139\) 12.6046 1.06911 0.534555 0.845134i \(-0.320479\pi\)
0.534555 + 0.845134i \(0.320479\pi\)
\(140\) −0.540319 −0.0456653
\(141\) −6.18136 −0.520564
\(142\) −20.0970 −1.68650
\(143\) −1.28597 −0.107538
\(144\) −3.38669 −0.282225
\(145\) −0.983662 −0.0816887
\(146\) 30.8704 2.55485
\(147\) −1.00000 −0.0824786
\(148\) 12.8061 1.05265
\(149\) −2.09698 −0.171791 −0.0858955 0.996304i \(-0.527375\pi\)
−0.0858955 + 0.996304i \(0.527375\pi\)
\(150\) −10.2151 −0.834061
\(151\) 8.60462 0.700234 0.350117 0.936706i \(-0.386142\pi\)
0.350117 + 0.936706i \(0.386142\pi\)
\(152\) −4.40745 −0.357491
\(153\) −1.00000 −0.0808452
\(154\) 11.1650 0.899703
\(155\) −1.47122 −0.118171
\(156\) −0.540319 −0.0432602
\(157\) 13.1084 1.04616 0.523081 0.852283i \(-0.324782\pi\)
0.523081 + 0.852283i \(0.324782\pi\)
\(158\) 34.9030 2.77674
\(159\) −12.1814 −0.966045
\(160\) −1.93143 −0.152693
\(161\) 6.38669 0.503342
\(162\) −2.06644 −0.162355
\(163\) −2.54032 −0.198973 −0.0994866 0.995039i \(-0.531720\pi\)
−0.0994866 + 0.995039i \(0.531720\pi\)
\(164\) −14.3072 −1.11721
\(165\) −1.28597 −0.100113
\(166\) −11.2821 −0.875660
\(167\) 14.5038 1.12233 0.561167 0.827703i \(-0.310352\pi\)
0.561167 + 0.827703i \(0.310352\pi\)
\(168\) 0.558268 0.0430713
\(169\) −12.9434 −0.995642
\(170\) −0.491831 −0.0377217
\(171\) 7.89486 0.603735
\(172\) 24.6601 1.88031
\(173\) −9.58439 −0.728688 −0.364344 0.931264i \(-0.618707\pi\)
−0.364344 + 0.931264i \(0.618707\pi\)
\(174\) 8.54032 0.647440
\(175\) −4.94335 −0.373682
\(176\) 18.2984 1.37930
\(177\) 4.14869 0.311834
\(178\) 13.3823 1.00304
\(179\) −10.3986 −0.777229 −0.388615 0.921400i \(-0.627046\pi\)
−0.388615 + 0.921400i \(0.627046\pi\)
\(180\) −0.540319 −0.0402730
\(181\) −18.9389 −1.40772 −0.703860 0.710339i \(-0.748542\pi\)
−0.703860 + 0.710339i \(0.748542\pi\)
\(182\) −0.491831 −0.0364569
\(183\) 2.55613 0.188955
\(184\) −3.56548 −0.262851
\(185\) −1.34262 −0.0987114
\(186\) 12.7734 0.936590
\(187\) 5.40303 0.395109
\(188\) 14.0327 1.02344
\(189\) −1.00000 −0.0727393
\(190\) 3.88294 0.281698
\(191\) −11.2451 −0.813669 −0.406835 0.913502i \(-0.633368\pi\)
−0.406835 + 0.913502i \(0.633368\pi\)
\(192\) 9.99559 0.721369
\(193\) 3.10072 0.223195 0.111597 0.993753i \(-0.464403\pi\)
0.111597 + 0.993753i \(0.464403\pi\)
\(194\) 4.27457 0.306896
\(195\) 0.0566484 0.00405668
\(196\) 2.27016 0.162154
\(197\) 6.51957 0.464500 0.232250 0.972656i \(-0.425391\pi\)
0.232250 + 0.972656i \(0.425391\pi\)
\(198\) 11.1650 0.793464
\(199\) −7.64104 −0.541659 −0.270830 0.962627i \(-0.587298\pi\)
−0.270830 + 0.962627i \(0.587298\pi\)
\(200\) 2.75971 0.195141
\(201\) −5.45968 −0.385096
\(202\) −19.4881 −1.37118
\(203\) 4.13287 0.290071
\(204\) 2.27016 0.158943
\(205\) 1.50001 0.104765
\(206\) 17.4983 1.21916
\(207\) 6.38669 0.443906
\(208\) −0.806065 −0.0558905
\(209\) −42.6562 −2.95059
\(210\) −0.491831 −0.0339396
\(211\) −2.29466 −0.157971 −0.0789854 0.996876i \(-0.525168\pi\)
−0.0789854 + 0.996876i \(0.525168\pi\)
\(212\) 27.6536 1.89926
\(213\) −9.72543 −0.666375
\(214\) −31.9623 −2.18490
\(215\) −2.58543 −0.176325
\(216\) 0.558268 0.0379853
\(217\) 6.18136 0.419618
\(218\) −2.84196 −0.192482
\(219\) 14.9389 1.00948
\(220\) 2.91936 0.196823
\(221\) −0.238009 −0.0160102
\(222\) 11.6569 0.782357
\(223\) −17.2729 −1.15668 −0.578339 0.815797i \(-0.696299\pi\)
−0.578339 + 0.815797i \(0.696299\pi\)
\(224\) 8.11492 0.542201
\(225\) −4.94335 −0.329557
\(226\) −21.9384 −1.45932
\(227\) 12.7783 0.848127 0.424064 0.905632i \(-0.360603\pi\)
0.424064 + 0.905632i \(0.360603\pi\)
\(228\) −17.9226 −1.18695
\(229\) 18.8704 1.24699 0.623494 0.781828i \(-0.285712\pi\)
0.623494 + 0.781828i \(0.285712\pi\)
\(230\) 3.14118 0.207123
\(231\) 5.40303 0.355493
\(232\) −2.30725 −0.151478
\(233\) −9.09151 −0.595605 −0.297802 0.954628i \(-0.596254\pi\)
−0.297802 + 0.954628i \(0.596254\pi\)
\(234\) −0.491831 −0.0321520
\(235\) −1.47122 −0.0959719
\(236\) −9.41818 −0.613071
\(237\) 16.8904 1.09715
\(238\) 2.06644 0.133947
\(239\) 16.8219 1.08812 0.544058 0.839047i \(-0.316887\pi\)
0.544058 + 0.839047i \(0.316887\pi\)
\(240\) −0.806065 −0.0520313
\(241\) −8.10125 −0.521847 −0.260924 0.965359i \(-0.584027\pi\)
−0.260924 + 0.965359i \(0.584027\pi\)
\(242\) −37.5942 −2.41665
\(243\) −1.00000 −0.0641500
\(244\) −5.80283 −0.371488
\(245\) −0.238009 −0.0152059
\(246\) −13.0233 −0.830337
\(247\) 1.87905 0.119561
\(248\) −3.45085 −0.219129
\(249\) −5.45968 −0.345993
\(250\) −4.89045 −0.309299
\(251\) −2.68900 −0.169728 −0.0848642 0.996393i \(-0.527046\pi\)
−0.0848642 + 0.996393i \(0.527046\pi\)
\(252\) 2.27016 0.143007
\(253\) −34.5075 −2.16947
\(254\) 4.93195 0.309458
\(255\) −0.238009 −0.0149047
\(256\) 10.8464 0.677898
\(257\) −20.5441 −1.28150 −0.640752 0.767748i \(-0.721377\pi\)
−0.640752 + 0.767748i \(0.721377\pi\)
\(258\) 22.4471 1.39750
\(259\) 5.64104 0.350517
\(260\) −0.128601 −0.00797549
\(261\) 4.13287 0.255818
\(262\) 27.0201 1.66931
\(263\) 11.4554 0.706371 0.353185 0.935553i \(-0.385098\pi\)
0.353185 + 0.935553i \(0.385098\pi\)
\(264\) −3.01634 −0.185643
\(265\) −2.89928 −0.178101
\(266\) −16.3142 −1.00029
\(267\) 6.47602 0.396326
\(268\) 12.3943 0.757105
\(269\) −23.5201 −1.43405 −0.717023 0.697050i \(-0.754496\pi\)
−0.717023 + 0.697050i \(0.754496\pi\)
\(270\) −0.491831 −0.0299319
\(271\) 27.4743 1.66895 0.834473 0.551049i \(-0.185772\pi\)
0.834473 + 0.551049i \(0.185772\pi\)
\(272\) 3.38669 0.205349
\(273\) −0.238009 −0.0144050
\(274\) 12.9063 0.779696
\(275\) 26.7091 1.61062
\(276\) −14.4988 −0.872726
\(277\) 9.01634 0.541739 0.270870 0.962616i \(-0.412689\pi\)
0.270870 + 0.962616i \(0.412689\pi\)
\(278\) −26.0466 −1.56217
\(279\) 6.18136 0.370068
\(280\) 0.132873 0.00794067
\(281\) 9.78973 0.584006 0.292003 0.956417i \(-0.405678\pi\)
0.292003 + 0.956417i \(0.405678\pi\)
\(282\) 12.7734 0.760644
\(283\) −12.1487 −0.722164 −0.361082 0.932534i \(-0.617593\pi\)
−0.361082 + 0.932534i \(0.617593\pi\)
\(284\) 22.0783 1.31010
\(285\) 1.87905 0.111305
\(286\) 2.65738 0.157134
\(287\) −6.30231 −0.372014
\(288\) 8.11492 0.478177
\(289\) 1.00000 0.0588235
\(290\) 2.03268 0.119363
\(291\) 2.06857 0.121262
\(292\) −33.9138 −1.98465
\(293\) −27.7254 −1.61974 −0.809868 0.586612i \(-0.800462\pi\)
−0.809868 + 0.586612i \(0.800462\pi\)
\(294\) 2.06644 0.120517
\(295\) 0.987426 0.0574902
\(296\) −3.14921 −0.183044
\(297\) 5.40303 0.313516
\(298\) 4.33327 0.251019
\(299\) 1.52009 0.0879092
\(300\) 11.2222 0.647914
\(301\) 10.8627 0.626116
\(302\) −17.7809 −1.02318
\(303\) −9.43077 −0.541784
\(304\) −26.7375 −1.53350
\(305\) 0.608383 0.0348359
\(306\) 2.06644 0.118130
\(307\) 3.29518 0.188066 0.0940330 0.995569i \(-0.470024\pi\)
0.0940330 + 0.995569i \(0.470024\pi\)
\(308\) −12.2657 −0.698906
\(309\) 8.46786 0.481720
\(310\) 3.04019 0.172671
\(311\) 7.18511 0.407430 0.203715 0.979030i \(-0.434698\pi\)
0.203715 + 0.979030i \(0.434698\pi\)
\(312\) 0.132873 0.00752245
\(313\) −30.3697 −1.71660 −0.858299 0.513150i \(-0.828478\pi\)
−0.858299 + 0.513150i \(0.828478\pi\)
\(314\) −27.0876 −1.52864
\(315\) −0.238009 −0.0134103
\(316\) −38.3440 −2.15702
\(317\) −16.8746 −0.947774 −0.473887 0.880586i \(-0.657149\pi\)
−0.473887 + 0.880586i \(0.657149\pi\)
\(318\) 25.1720 1.41158
\(319\) −22.3300 −1.25024
\(320\) 2.37904 0.132993
\(321\) −15.4673 −0.863302
\(322\) −13.1977 −0.735479
\(323\) −7.89486 −0.439282
\(324\) 2.27016 0.126120
\(325\) −1.17656 −0.0652640
\(326\) 5.24941 0.290738
\(327\) −1.37530 −0.0760540
\(328\) 3.51838 0.194270
\(329\) 6.18136 0.340789
\(330\) 2.65738 0.146284
\(331\) 30.1764 1.65865 0.829323 0.558769i \(-0.188726\pi\)
0.829323 + 0.558769i \(0.188726\pi\)
\(332\) 12.3943 0.680228
\(333\) 5.64104 0.309127
\(334\) −29.9711 −1.63994
\(335\) −1.29945 −0.0709968
\(336\) 3.38669 0.184759
\(337\) 0.478732 0.0260782 0.0130391 0.999915i \(-0.495849\pi\)
0.0130391 + 0.999915i \(0.495849\pi\)
\(338\) 26.7466 1.45482
\(339\) −10.6165 −0.576611
\(340\) 0.540319 0.0293029
\(341\) −33.3981 −1.80861
\(342\) −16.3142 −0.882173
\(343\) 1.00000 0.0539949
\(344\) −6.06430 −0.326965
\(345\) 1.52009 0.0818390
\(346\) 19.8055 1.06475
\(347\) −5.82240 −0.312563 −0.156281 0.987713i \(-0.549951\pi\)
−0.156281 + 0.987713i \(0.549951\pi\)
\(348\) −9.38228 −0.502943
\(349\) −0.416657 −0.0223031 −0.0111516 0.999938i \(-0.503550\pi\)
−0.0111516 + 0.999938i \(0.503550\pi\)
\(350\) 10.2151 0.546021
\(351\) −0.238009 −0.0127040
\(352\) −43.8452 −2.33696
\(353\) 1.37530 0.0731996 0.0365998 0.999330i \(-0.488347\pi\)
0.0365998 + 0.999330i \(0.488347\pi\)
\(354\) −8.57299 −0.455650
\(355\) −2.31474 −0.122854
\(356\) −14.7016 −0.779183
\(357\) 1.00000 0.0529256
\(358\) 21.4881 1.13568
\(359\) −5.41119 −0.285592 −0.142796 0.989752i \(-0.545609\pi\)
−0.142796 + 0.989752i \(0.545609\pi\)
\(360\) 0.132873 0.00700302
\(361\) 43.3289 2.28047
\(362\) 39.1361 2.05695
\(363\) −18.1928 −0.954872
\(364\) 0.540319 0.0283204
\(365\) 3.55561 0.186109
\(366\) −5.28208 −0.276099
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) −21.6298 −1.12753
\(369\) −6.30231 −0.328085
\(370\) 2.77444 0.144236
\(371\) 12.1814 0.632425
\(372\) −14.0327 −0.727560
\(373\) 16.8061 0.870185 0.435093 0.900386i \(-0.356716\pi\)
0.435093 + 0.900386i \(0.356716\pi\)
\(374\) −11.1650 −0.577330
\(375\) −2.36661 −0.122211
\(376\) −3.45085 −0.177964
\(377\) 0.983662 0.0506612
\(378\) 2.06644 0.106286
\(379\) −13.9673 −0.717453 −0.358727 0.933443i \(-0.616789\pi\)
−0.358727 + 0.933443i \(0.616789\pi\)
\(380\) −4.26575 −0.218828
\(381\) 2.38669 0.122274
\(382\) 23.2374 1.18893
\(383\) −19.7696 −1.01018 −0.505091 0.863066i \(-0.668541\pi\)
−0.505091 + 0.863066i \(0.668541\pi\)
\(384\) −4.42539 −0.225832
\(385\) 1.28597 0.0655392
\(386\) −6.40745 −0.326130
\(387\) 10.8627 0.552183
\(388\) −4.69599 −0.238403
\(389\) 19.8224 1.00504 0.502518 0.864567i \(-0.332407\pi\)
0.502518 + 0.864567i \(0.332407\pi\)
\(390\) −0.117060 −0.00592758
\(391\) −6.38669 −0.322989
\(392\) −0.558268 −0.0281968
\(393\) 13.0757 0.659582
\(394\) −13.4723 −0.678723
\(395\) 4.02008 0.202272
\(396\) −12.2657 −0.616377
\(397\) 34.2411 1.71851 0.859256 0.511546i \(-0.170927\pi\)
0.859256 + 0.511546i \(0.170927\pi\)
\(398\) 15.7897 0.791468
\(399\) −7.89486 −0.395238
\(400\) 16.7416 0.837081
\(401\) 2.96396 0.148013 0.0740066 0.997258i \(-0.476421\pi\)
0.0740066 + 0.997258i \(0.476421\pi\)
\(402\) 11.2821 0.562699
\(403\) 1.47122 0.0732868
\(404\) 21.4094 1.06515
\(405\) −0.238009 −0.0118268
\(406\) −8.54032 −0.423849
\(407\) −30.4787 −1.51077
\(408\) −0.558268 −0.0276384
\(409\) 35.2128 1.74116 0.870582 0.492024i \(-0.163743\pi\)
0.870582 + 0.492024i \(0.163743\pi\)
\(410\) −3.09967 −0.153082
\(411\) 6.24566 0.308076
\(412\) −19.2234 −0.947068
\(413\) −4.14869 −0.204143
\(414\) −13.1977 −0.648632
\(415\) −1.29945 −0.0637877
\(416\) 1.93143 0.0946960
\(417\) −12.6046 −0.617251
\(418\) 88.1463 4.31138
\(419\) −13.0391 −0.637003 −0.318502 0.947922i \(-0.603180\pi\)
−0.318502 + 0.947922i \(0.603180\pi\)
\(420\) 0.540319 0.0263649
\(421\) −24.6763 −1.20265 −0.601324 0.799005i \(-0.705360\pi\)
−0.601324 + 0.799005i \(0.705360\pi\)
\(422\) 4.74176 0.230825
\(423\) 6.18136 0.300548
\(424\) −6.80046 −0.330259
\(425\) 4.94335 0.239788
\(426\) 20.0970 0.973702
\(427\) −2.55613 −0.123700
\(428\) 35.1133 1.69727
\(429\) 1.28597 0.0620873
\(430\) 5.34262 0.257644
\(431\) 0.265746 0.0128005 0.00640026 0.999980i \(-0.497963\pi\)
0.00640026 + 0.999980i \(0.497963\pi\)
\(432\) 3.38669 0.162942
\(433\) 15.9961 0.768724 0.384362 0.923182i \(-0.374421\pi\)
0.384362 + 0.923182i \(0.374421\pi\)
\(434\) −12.7734 −0.613142
\(435\) 0.983662 0.0471630
\(436\) 3.12214 0.149523
\(437\) 50.4221 2.41202
\(438\) −30.8704 −1.47504
\(439\) 6.82615 0.325794 0.162897 0.986643i \(-0.447916\pi\)
0.162897 + 0.986643i \(0.447916\pi\)
\(440\) −0.717916 −0.0342253
\(441\) 1.00000 0.0476190
\(442\) 0.491831 0.0233940
\(443\) 21.3295 1.01340 0.506698 0.862124i \(-0.330866\pi\)
0.506698 + 0.862124i \(0.330866\pi\)
\(444\) −12.8061 −0.607749
\(445\) 1.54135 0.0730671
\(446\) 35.6933 1.69013
\(447\) 2.09698 0.0991836
\(448\) −9.99559 −0.472247
\(449\) 4.49559 0.212160 0.106080 0.994358i \(-0.466170\pi\)
0.106080 + 0.994358i \(0.466170\pi\)
\(450\) 10.2151 0.481545
\(451\) 34.0516 1.60343
\(452\) 24.1012 1.13363
\(453\) −8.60462 −0.404280
\(454\) −26.4056 −1.23928
\(455\) −0.0566484 −0.00265572
\(456\) 4.40745 0.206398
\(457\) 4.69394 0.219573 0.109787 0.993955i \(-0.464983\pi\)
0.109787 + 0.993955i \(0.464983\pi\)
\(458\) −38.9944 −1.82209
\(459\) 1.00000 0.0466760
\(460\) −3.45085 −0.160897
\(461\) 12.9548 0.603363 0.301681 0.953409i \(-0.402452\pi\)
0.301681 + 0.953409i \(0.402452\pi\)
\(462\) −11.1650 −0.519444
\(463\) −22.7744 −1.05842 −0.529209 0.848492i \(-0.677511\pi\)
−0.529209 + 0.848492i \(0.677511\pi\)
\(464\) −13.9968 −0.649784
\(465\) 1.47122 0.0682263
\(466\) 18.7870 0.870292
\(467\) −40.4498 −1.87179 −0.935897 0.352273i \(-0.885409\pi\)
−0.935897 + 0.352273i \(0.885409\pi\)
\(468\) 0.540319 0.0249763
\(469\) 5.45968 0.252105
\(470\) 3.04019 0.140233
\(471\) −13.1084 −0.604002
\(472\) 2.31608 0.106606
\(473\) −58.6916 −2.69864
\(474\) −34.9030 −1.60315
\(475\) −39.0271 −1.79069
\(476\) −2.27016 −0.104053
\(477\) 12.1814 0.557746
\(478\) −34.7613 −1.58995
\(479\) 7.31865 0.334398 0.167199 0.985923i \(-0.446528\pi\)
0.167199 + 0.985923i \(0.446528\pi\)
\(480\) 1.93143 0.0881572
\(481\) 1.34262 0.0612182
\(482\) 16.7407 0.762519
\(483\) −6.38669 −0.290605
\(484\) 41.3005 1.87729
\(485\) 0.492339 0.0223560
\(486\) 2.06644 0.0937355
\(487\) 25.0391 1.13463 0.567316 0.823500i \(-0.307982\pi\)
0.567316 + 0.823500i \(0.307982\pi\)
\(488\) 1.42701 0.0645975
\(489\) 2.54032 0.114877
\(490\) 0.491831 0.0222187
\(491\) 35.5109 1.60258 0.801292 0.598274i \(-0.204146\pi\)
0.801292 + 0.598274i \(0.204146\pi\)
\(492\) 14.3072 0.645021
\(493\) −4.13287 −0.186135
\(494\) −3.88294 −0.174702
\(495\) 1.28597 0.0578001
\(496\) −20.9344 −0.939982
\(497\) 9.72543 0.436245
\(498\) 11.2821 0.505562
\(499\) 21.1246 0.945666 0.472833 0.881152i \(-0.343231\pi\)
0.472833 + 0.881152i \(0.343231\pi\)
\(500\) 5.37258 0.240269
\(501\) −14.5038 −0.647980
\(502\) 5.55666 0.248006
\(503\) 31.4296 1.40138 0.700688 0.713468i \(-0.252876\pi\)
0.700688 + 0.713468i \(0.252876\pi\)
\(504\) −0.558268 −0.0248672
\(505\) −2.24461 −0.0998839
\(506\) 71.3076 3.17001
\(507\) 12.9434 0.574834
\(508\) −5.41818 −0.240393
\(509\) −3.19394 −0.141569 −0.0707843 0.997492i \(-0.522550\pi\)
−0.0707843 + 0.997492i \(0.522550\pi\)
\(510\) 0.491831 0.0217786
\(511\) −14.9389 −0.660860
\(512\) −31.2641 −1.38169
\(513\) −7.89486 −0.348567
\(514\) 42.4530 1.87252
\(515\) 2.01543 0.0888104
\(516\) −24.6601 −1.08560
\(517\) −33.3981 −1.46885
\(518\) −11.6569 −0.512173
\(519\) 9.58439 0.420708
\(520\) 0.0316250 0.00138685
\(521\) 19.2782 0.844593 0.422297 0.906458i \(-0.361224\pi\)
0.422297 + 0.906458i \(0.361224\pi\)
\(522\) −8.54032 −0.373800
\(523\) 6.51192 0.284746 0.142373 0.989813i \(-0.454527\pi\)
0.142373 + 0.989813i \(0.454527\pi\)
\(524\) −29.6839 −1.29675
\(525\) 4.94335 0.215746
\(526\) −23.6719 −1.03214
\(527\) −6.18136 −0.269264
\(528\) −18.2984 −0.796337
\(529\) 17.7899 0.773473
\(530\) 5.99117 0.260240
\(531\) −4.14869 −0.180038
\(532\) 17.9226 0.777043
\(533\) −1.50001 −0.0649726
\(534\) −13.3823 −0.579108
\(535\) −3.68137 −0.159159
\(536\) −3.04796 −0.131652
\(537\) 10.3986 0.448734
\(538\) 48.6028 2.09541
\(539\) −5.40303 −0.232725
\(540\) 0.540319 0.0232516
\(541\) −17.7265 −0.762121 −0.381060 0.924550i \(-0.624441\pi\)
−0.381060 + 0.924550i \(0.624441\pi\)
\(542\) −56.7739 −2.43865
\(543\) 18.9389 0.812748
\(544\) −8.11492 −0.347925
\(545\) −0.327333 −0.0140214
\(546\) 0.491831 0.0210484
\(547\) −15.2620 −0.652556 −0.326278 0.945274i \(-0.605795\pi\)
−0.326278 + 0.945274i \(0.605795\pi\)
\(548\) −14.1786 −0.605682
\(549\) −2.55613 −0.109093
\(550\) −55.1926 −2.35342
\(551\) 32.6285 1.39002
\(552\) 3.56548 0.151757
\(553\) −16.8904 −0.718255
\(554\) −18.6317 −0.791585
\(555\) 1.34262 0.0569911
\(556\) 28.6145 1.21353
\(557\) −33.0102 −1.39869 −0.699344 0.714785i \(-0.746524\pi\)
−0.699344 + 0.714785i \(0.746524\pi\)
\(558\) −12.7734 −0.540741
\(559\) 2.58543 0.109352
\(560\) 0.806065 0.0340625
\(561\) −5.40303 −0.228116
\(562\) −20.2298 −0.853345
\(563\) 1.49131 0.0628510 0.0314255 0.999506i \(-0.489995\pi\)
0.0314255 + 0.999506i \(0.489995\pi\)
\(564\) −14.0327 −0.590882
\(565\) −2.52684 −0.106305
\(566\) 25.1045 1.05522
\(567\) 1.00000 0.0419961
\(568\) −5.42939 −0.227812
\(569\) 0.242948 0.0101849 0.00509246 0.999987i \(-0.498379\pi\)
0.00509246 + 0.999987i \(0.498379\pi\)
\(570\) −3.88294 −0.162638
\(571\) −23.2505 −0.973001 −0.486501 0.873680i \(-0.661727\pi\)
−0.486501 + 0.873680i \(0.661727\pi\)
\(572\) −2.91936 −0.122065
\(573\) 11.2451 0.469772
\(574\) 13.0233 0.543583
\(575\) −31.5717 −1.31663
\(576\) −9.99559 −0.416483
\(577\) −10.5364 −0.438637 −0.219319 0.975653i \(-0.570383\pi\)
−0.219319 + 0.975653i \(0.570383\pi\)
\(578\) −2.06644 −0.0859524
\(579\) −3.10072 −0.128862
\(580\) −2.23307 −0.0927232
\(581\) 5.45968 0.226506
\(582\) −4.27457 −0.177187
\(583\) −65.8163 −2.72583
\(584\) 8.33992 0.345109
\(585\) −0.0566484 −0.00234212
\(586\) 57.2928 2.36675
\(587\) 43.8752 1.81092 0.905461 0.424430i \(-0.139525\pi\)
0.905461 + 0.424430i \(0.139525\pi\)
\(588\) −2.27016 −0.0936198
\(589\) 48.8010 2.01081
\(590\) −2.04045 −0.0840041
\(591\) −6.51957 −0.268179
\(592\) −19.1045 −0.785190
\(593\) 45.3175 1.86097 0.930483 0.366336i \(-0.119388\pi\)
0.930483 + 0.366336i \(0.119388\pi\)
\(594\) −11.1650 −0.458106
\(595\) 0.238009 0.00975743
\(596\) −4.76047 −0.194996
\(597\) 7.64104 0.312727
\(598\) −3.14118 −0.128452
\(599\) −7.25368 −0.296377 −0.148189 0.988959i \(-0.547344\pi\)
−0.148189 + 0.988959i \(0.547344\pi\)
\(600\) −2.75971 −0.112665
\(601\) −4.18458 −0.170693 −0.0853463 0.996351i \(-0.527200\pi\)
−0.0853463 + 0.996351i \(0.527200\pi\)
\(602\) −22.4471 −0.914876
\(603\) 5.45968 0.222335
\(604\) 19.5339 0.794821
\(605\) −4.33005 −0.176041
\(606\) 19.4881 0.791649
\(607\) −34.6812 −1.40767 −0.703834 0.710365i \(-0.748530\pi\)
−0.703834 + 0.710365i \(0.748530\pi\)
\(608\) 64.0662 2.59823
\(609\) −4.13287 −0.167472
\(610\) −1.25719 −0.0509019
\(611\) 1.47122 0.0595192
\(612\) −2.27016 −0.0917658
\(613\) 1.98352 0.0801136 0.0400568 0.999197i \(-0.487246\pi\)
0.0400568 + 0.999197i \(0.487246\pi\)
\(614\) −6.80929 −0.274800
\(615\) −1.50001 −0.0604862
\(616\) 3.01634 0.121532
\(617\) −11.1808 −0.450123 −0.225062 0.974345i \(-0.572258\pi\)
−0.225062 + 0.974345i \(0.572258\pi\)
\(618\) −17.4983 −0.703884
\(619\) −40.8425 −1.64160 −0.820799 0.571217i \(-0.806472\pi\)
−0.820799 + 0.571217i \(0.806472\pi\)
\(620\) −3.33991 −0.134134
\(621\) −6.38669 −0.256289
\(622\) −14.8476 −0.595333
\(623\) −6.47602 −0.259456
\(624\) 0.806065 0.0322684
\(625\) 24.1535 0.966139
\(626\) 62.7571 2.50828
\(627\) 42.6562 1.70352
\(628\) 29.7581 1.18748
\(629\) −5.64104 −0.224923
\(630\) 0.491831 0.0195950
\(631\) 11.8702 0.472546 0.236273 0.971687i \(-0.424074\pi\)
0.236273 + 0.971687i \(0.424074\pi\)
\(632\) 9.42939 0.375081
\(633\) 2.29466 0.0912045
\(634\) 34.8704 1.38488
\(635\) 0.568056 0.0225426
\(636\) −27.6536 −1.09654
\(637\) 0.238009 0.00943027
\(638\) 46.1436 1.82684
\(639\) 9.72543 0.384732
\(640\) −1.05329 −0.0416348
\(641\) −37.2440 −1.47105 −0.735524 0.677499i \(-0.763064\pi\)
−0.735524 + 0.677499i \(0.763064\pi\)
\(642\) 31.9623 1.26145
\(643\) 44.7254 1.76380 0.881900 0.471437i \(-0.156265\pi\)
0.881900 + 0.471437i \(0.156265\pi\)
\(644\) 14.4988 0.571333
\(645\) 2.58543 0.101801
\(646\) 16.3142 0.641875
\(647\) −4.67641 −0.183849 −0.0919244 0.995766i \(-0.529302\pi\)
−0.0919244 + 0.995766i \(0.529302\pi\)
\(648\) −0.558268 −0.0219308
\(649\) 22.4155 0.879885
\(650\) 2.43129 0.0953632
\(651\) −6.18136 −0.242267
\(652\) −5.76693 −0.225850
\(653\) −35.0511 −1.37165 −0.685827 0.727765i \(-0.740559\pi\)
−0.685827 + 0.727765i \(0.740559\pi\)
\(654\) 2.84196 0.111129
\(655\) 3.11214 0.121601
\(656\) 21.3440 0.833343
\(657\) −14.9389 −0.582823
\(658\) −12.7734 −0.497959
\(659\) −50.0635 −1.95020 −0.975099 0.221771i \(-0.928816\pi\)
−0.975099 + 0.221771i \(0.928816\pi\)
\(660\) −2.91936 −0.113636
\(661\) −12.4221 −0.483163 −0.241582 0.970381i \(-0.577666\pi\)
−0.241582 + 0.970381i \(0.577666\pi\)
\(662\) −62.3577 −2.42360
\(663\) 0.238009 0.00924352
\(664\) −3.04796 −0.118284
\(665\) −1.87905 −0.0728665
\(666\) −11.6569 −0.451694
\(667\) 26.3954 1.02203
\(668\) 32.9258 1.27394
\(669\) 17.2729 0.667808
\(670\) 2.68524 0.103740
\(671\) 13.8109 0.533162
\(672\) −8.11492 −0.313040
\(673\) 24.4270 0.941593 0.470796 0.882242i \(-0.343967\pi\)
0.470796 + 0.882242i \(0.343967\pi\)
\(674\) −0.989268 −0.0381052
\(675\) 4.94335 0.190270
\(676\) −29.3835 −1.13013
\(677\) −0.375154 −0.0144183 −0.00720917 0.999974i \(-0.502295\pi\)
−0.00720917 + 0.999974i \(0.502295\pi\)
\(678\) 21.9384 0.842540
\(679\) −2.06857 −0.0793845
\(680\) −0.132873 −0.00509544
\(681\) −12.7783 −0.489667
\(682\) 69.0150 2.64272
\(683\) 5.26589 0.201494 0.100747 0.994912i \(-0.467877\pi\)
0.100747 + 0.994912i \(0.467877\pi\)
\(684\) 17.9226 0.685288
\(685\) 1.48653 0.0567972
\(686\) −2.06644 −0.0788969
\(687\) −18.8704 −0.719949
\(688\) −36.7887 −1.40256
\(689\) 2.89928 0.110454
\(690\) −3.14118 −0.119582
\(691\) −39.3491 −1.49691 −0.748455 0.663185i \(-0.769204\pi\)
−0.748455 + 0.663185i \(0.769204\pi\)
\(692\) −21.7581 −0.827119
\(693\) −5.40303 −0.205244
\(694\) 12.0316 0.456714
\(695\) −3.00002 −0.113797
\(696\) 2.30725 0.0874560
\(697\) 6.30231 0.238717
\(698\) 0.860996 0.0325892
\(699\) 9.09151 0.343873
\(700\) −11.2222 −0.424159
\(701\) 3.68526 0.139190 0.0695951 0.997575i \(-0.477829\pi\)
0.0695951 + 0.997575i \(0.477829\pi\)
\(702\) 0.491831 0.0185630
\(703\) 44.5353 1.67968
\(704\) 54.0065 2.03545
\(705\) 1.47122 0.0554094
\(706\) −2.84196 −0.106959
\(707\) 9.43077 0.354681
\(708\) 9.41818 0.353957
\(709\) 15.9673 0.599665 0.299833 0.953992i \(-0.403069\pi\)
0.299833 + 0.953992i \(0.403069\pi\)
\(710\) 4.78327 0.179513
\(711\) −16.8904 −0.633441
\(712\) 3.61535 0.135491
\(713\) 39.4785 1.47848
\(714\) −2.06644 −0.0773344
\(715\) 0.306073 0.0114465
\(716\) −23.6065 −0.882217
\(717\) −16.8219 −0.628225
\(718\) 11.1819 0.417304
\(719\) −24.2206 −0.903277 −0.451639 0.892201i \(-0.649160\pi\)
−0.451639 + 0.892201i \(0.649160\pi\)
\(720\) 0.806065 0.0300403
\(721\) −8.46786 −0.315360
\(722\) −89.5364 −3.33220
\(723\) 8.10125 0.301289
\(724\) −42.9944 −1.59787
\(725\) −20.4302 −0.758760
\(726\) 37.5942 1.39525
\(727\) 31.9869 1.18633 0.593164 0.805081i \(-0.297878\pi\)
0.593164 + 0.805081i \(0.297878\pi\)
\(728\) −0.132873 −0.00492460
\(729\) 1.00000 0.0370370
\(730\) −7.34743 −0.271941
\(731\) −10.8627 −0.401772
\(732\) 5.80283 0.214479
\(733\) −13.6850 −0.505466 −0.252733 0.967536i \(-0.581329\pi\)
−0.252733 + 0.967536i \(0.581329\pi\)
\(734\) 0 0
\(735\) 0.238009 0.00877911
\(736\) 51.8275 1.91039
\(737\) −29.4988 −1.08660
\(738\) 13.0233 0.479395
\(739\) 5.27443 0.194023 0.0970115 0.995283i \(-0.469072\pi\)
0.0970115 + 0.995283i \(0.469072\pi\)
\(740\) −3.04796 −0.112045
\(741\) −1.87905 −0.0690287
\(742\) −25.1720 −0.924093
\(743\) −8.67641 −0.318307 −0.159153 0.987254i \(-0.550876\pi\)
−0.159153 + 0.987254i \(0.550876\pi\)
\(744\) 3.45085 0.126514
\(745\) 0.499100 0.0182856
\(746\) −34.7287 −1.27151
\(747\) 5.45968 0.199759
\(748\) 12.2657 0.448480
\(749\) 15.4673 0.565164
\(750\) 4.89045 0.178574
\(751\) 3.27832 0.119628 0.0598138 0.998210i \(-0.480949\pi\)
0.0598138 + 0.998210i \(0.480949\pi\)
\(752\) −20.9344 −0.763398
\(753\) 2.68900 0.0979928
\(754\) −2.03268 −0.0740257
\(755\) −2.04798 −0.0745336
\(756\) −2.27016 −0.0825649
\(757\) 0.273398 0.00993681 0.00496841 0.999988i \(-0.498419\pi\)
0.00496841 + 0.999988i \(0.498419\pi\)
\(758\) 28.8626 1.04834
\(759\) 34.5075 1.25254
\(760\) 1.04901 0.0380517
\(761\) 13.5795 0.492255 0.246127 0.969237i \(-0.420842\pi\)
0.246127 + 0.969237i \(0.420842\pi\)
\(762\) −4.93195 −0.178666
\(763\) 1.37530 0.0497891
\(764\) −25.5283 −0.923580
\(765\) 0.238009 0.00860524
\(766\) 40.8527 1.47607
\(767\) −0.987426 −0.0356539
\(768\) −10.8464 −0.391385
\(769\) 19.6072 0.707053 0.353527 0.935424i \(-0.384982\pi\)
0.353527 + 0.935424i \(0.384982\pi\)
\(770\) −2.65738 −0.0957653
\(771\) 20.5441 0.739877
\(772\) 7.03914 0.253344
\(773\) −27.4634 −0.987791 −0.493896 0.869521i \(-0.664428\pi\)
−0.493896 + 0.869521i \(0.664428\pi\)
\(774\) −22.4471 −0.806845
\(775\) −30.5566 −1.09763
\(776\) 1.15482 0.0414555
\(777\) −5.64104 −0.202371
\(778\) −40.9617 −1.46855
\(779\) −49.7559 −1.78269
\(780\) 0.128601 0.00460465
\(781\) −52.5468 −1.88027
\(782\) 13.1977 0.471949
\(783\) −4.13287 −0.147697
\(784\) −3.38669 −0.120953
\(785\) −3.11992 −0.111355
\(786\) −27.0201 −0.963775
\(787\) −32.5754 −1.16119 −0.580594 0.814193i \(-0.697180\pi\)
−0.580594 + 0.814193i \(0.697180\pi\)
\(788\) 14.8005 0.527245
\(789\) −11.4554 −0.407823
\(790\) −8.30725 −0.295559
\(791\) 10.6165 0.377481
\(792\) 3.01634 0.107181
\(793\) −0.608383 −0.0216043
\(794\) −70.7571 −2.51107
\(795\) 2.89928 0.102827
\(796\) −17.3464 −0.614826
\(797\) −12.4032 −0.439343 −0.219671 0.975574i \(-0.570499\pi\)
−0.219671 + 0.975574i \(0.570499\pi\)
\(798\) 16.3142 0.577518
\(799\) −6.18136 −0.218681
\(800\) −40.1149 −1.41828
\(801\) −6.47602 −0.228819
\(802\) −6.12484 −0.216276
\(803\) 80.7156 2.84839
\(804\) −12.3943 −0.437115
\(805\) −1.52009 −0.0535762
\(806\) −3.04019 −0.107086
\(807\) 23.5201 0.827946
\(808\) −5.26489 −0.185218
\(809\) −45.1807 −1.58847 −0.794235 0.607611i \(-0.792128\pi\)
−0.794235 + 0.607611i \(0.792128\pi\)
\(810\) 0.491831 0.0172812
\(811\) 11.6928 0.410588 0.205294 0.978700i \(-0.434185\pi\)
0.205294 + 0.978700i \(0.434185\pi\)
\(812\) 9.38228 0.329254
\(813\) −27.4743 −0.963566
\(814\) 62.9824 2.20753
\(815\) 0.604620 0.0211789
\(816\) −3.38669 −0.118558
\(817\) 85.7596 3.00035
\(818\) −72.7651 −2.54417
\(819\) 0.238009 0.00831672
\(820\) 3.40526 0.118917
\(821\) 39.1317 1.36571 0.682853 0.730556i \(-0.260739\pi\)
0.682853 + 0.730556i \(0.260739\pi\)
\(822\) −12.9063 −0.450158
\(823\) 10.8415 0.377909 0.188955 0.981986i \(-0.439490\pi\)
0.188955 + 0.981986i \(0.439490\pi\)
\(824\) 4.72733 0.164684
\(825\) −26.7091 −0.929891
\(826\) 8.57299 0.298293
\(827\) 29.8375 1.03755 0.518777 0.854910i \(-0.326388\pi\)
0.518777 + 0.854910i \(0.326388\pi\)
\(828\) 14.4988 0.503869
\(829\) −37.8452 −1.31442 −0.657209 0.753708i \(-0.728263\pi\)
−0.657209 + 0.753708i \(0.728263\pi\)
\(830\) 2.68524 0.0932061
\(831\) −9.01634 −0.312773
\(832\) −2.37904 −0.0824785
\(833\) −1.00000 −0.0346479
\(834\) 26.0466 0.901922
\(835\) −3.45203 −0.119462
\(836\) −96.8364 −3.34916
\(837\) −6.18136 −0.213659
\(838\) 26.9445 0.930784
\(839\) −39.4296 −1.36126 −0.680630 0.732627i \(-0.738294\pi\)
−0.680630 + 0.732627i \(0.738294\pi\)
\(840\) −0.132873 −0.00458455
\(841\) −11.9194 −0.411012
\(842\) 50.9920 1.75730
\(843\) −9.78973 −0.337176
\(844\) −5.20924 −0.179309
\(845\) 3.08064 0.105977
\(846\) −12.7734 −0.439158
\(847\) 18.1928 0.625111
\(848\) −41.2546 −1.41669
\(849\) 12.1487 0.416942
\(850\) −10.2151 −0.350376
\(851\) 36.0276 1.23501
\(852\) −22.0783 −0.756389
\(853\) −2.44283 −0.0836411 −0.0418205 0.999125i \(-0.513316\pi\)
−0.0418205 + 0.999125i \(0.513316\pi\)
\(854\) 5.28208 0.180749
\(855\) −1.87905 −0.0642622
\(856\) −8.63491 −0.295135
\(857\) 32.4018 1.10683 0.553413 0.832907i \(-0.313325\pi\)
0.553413 + 0.832907i \(0.313325\pi\)
\(858\) −2.65738 −0.0907214
\(859\) −49.1414 −1.67668 −0.838342 0.545145i \(-0.816475\pi\)
−0.838342 + 0.545145i \(0.816475\pi\)
\(860\) −5.86933 −0.200143
\(861\) 6.30231 0.214782
\(862\) −0.549147 −0.0187040
\(863\) 12.9842 0.441987 0.220994 0.975275i \(-0.429070\pi\)
0.220994 + 0.975275i \(0.429070\pi\)
\(864\) −8.11492 −0.276075
\(865\) 2.28117 0.0775623
\(866\) −33.0549 −1.12325
\(867\) −1.00000 −0.0339618
\(868\) 14.0327 0.476300
\(869\) 91.2596 3.09577
\(870\) −2.03268 −0.0689142
\(871\) 1.29945 0.0440303
\(872\) −0.767783 −0.0260004
\(873\) −2.06857 −0.0700106
\(874\) −104.194 −3.52442
\(875\) 2.36661 0.0800060
\(876\) 33.9138 1.14584
\(877\) −20.2130 −0.682544 −0.341272 0.939965i \(-0.610858\pi\)
−0.341272 + 0.939965i \(0.610858\pi\)
\(878\) −14.1058 −0.476048
\(879\) 27.7254 0.935155
\(880\) −4.35519 −0.146814
\(881\) 24.7329 0.833274 0.416637 0.909073i \(-0.363209\pi\)
0.416637 + 0.909073i \(0.363209\pi\)
\(882\) −2.06644 −0.0695805
\(883\) 1.87051 0.0629476 0.0314738 0.999505i \(-0.489980\pi\)
0.0314738 + 0.999505i \(0.489980\pi\)
\(884\) −0.540319 −0.0181729
\(885\) −0.987426 −0.0331920
\(886\) −44.0761 −1.48077
\(887\) −58.4459 −1.96242 −0.981211 0.192937i \(-0.938199\pi\)
−0.981211 + 0.192937i \(0.938199\pi\)
\(888\) 3.14921 0.105681
\(889\) −2.38669 −0.0800472
\(890\) −3.18511 −0.106765
\(891\) −5.40303 −0.181008
\(892\) −39.2122 −1.31292
\(893\) 48.8010 1.63306
\(894\) −4.33327 −0.144926
\(895\) 2.47497 0.0827291
\(896\) 4.42539 0.147842
\(897\) −1.52009 −0.0507544
\(898\) −9.28986 −0.310007
\(899\) 25.5468 0.852033
\(900\) −11.2222 −0.374073
\(901\) −12.1814 −0.405820
\(902\) −70.3654 −2.34291
\(903\) −10.8627 −0.361488
\(904\) −5.92687 −0.197125
\(905\) 4.50764 0.149839
\(906\) 17.7809 0.590731
\(907\) −7.38684 −0.245276 −0.122638 0.992451i \(-0.539135\pi\)
−0.122638 + 0.992451i \(0.539135\pi\)
\(908\) 29.0088 0.962692
\(909\) 9.43077 0.312799
\(910\) 0.117060 0.00388051
\(911\) −57.4106 −1.90210 −0.951048 0.309042i \(-0.899992\pi\)
−0.951048 + 0.309042i \(0.899992\pi\)
\(912\) 26.7375 0.885367
\(913\) −29.4988 −0.976269
\(914\) −9.69974 −0.320839
\(915\) −0.608383 −0.0201125
\(916\) 42.8387 1.41543
\(917\) −13.0757 −0.431798
\(918\) −2.06644 −0.0682026
\(919\) −39.6776 −1.30884 −0.654422 0.756130i \(-0.727088\pi\)
−0.654422 + 0.756130i \(0.727088\pi\)
\(920\) 0.848619 0.0279781
\(921\) −3.29518 −0.108580
\(922\) −26.7702 −0.881629
\(923\) 2.31474 0.0761907
\(924\) 12.2657 0.403513
\(925\) −27.8857 −0.916875
\(926\) 47.0619 1.54655
\(927\) −8.46786 −0.278121
\(928\) 33.5380 1.10094
\(929\) 5.89942 0.193554 0.0967768 0.995306i \(-0.469147\pi\)
0.0967768 + 0.995306i \(0.469147\pi\)
\(930\) −3.04019 −0.0996916
\(931\) 7.89486 0.258744
\(932\) −20.6392 −0.676059
\(933\) −7.18511 −0.235230
\(934\) 83.5870 2.73505
\(935\) −1.28597 −0.0420558
\(936\) −0.132873 −0.00434309
\(937\) −32.4825 −1.06116 −0.530578 0.847636i \(-0.678025\pi\)
−0.530578 + 0.847636i \(0.678025\pi\)
\(938\) −11.2821 −0.368373
\(939\) 30.3697 0.991078
\(940\) −3.33991 −0.108936
\(941\) −11.2746 −0.367541 −0.183771 0.982969i \(-0.558830\pi\)
−0.183771 + 0.982969i \(0.558830\pi\)
\(942\) 27.0876 0.882562
\(943\) −40.2509 −1.31075
\(944\) 14.0503 0.457299
\(945\) 0.238009 0.00774244
\(946\) 121.282 3.94323
\(947\) 17.6199 0.572570 0.286285 0.958145i \(-0.407580\pi\)
0.286285 + 0.958145i \(0.407580\pi\)
\(948\) 38.3440 1.24536
\(949\) −3.55561 −0.115420
\(950\) 80.6470 2.61653
\(951\) 16.8746 0.547198
\(952\) 0.558268 0.0180936
\(953\) −20.5026 −0.664144 −0.332072 0.943254i \(-0.607748\pi\)
−0.332072 + 0.943254i \(0.607748\pi\)
\(954\) −25.1720 −0.814974
\(955\) 2.67645 0.0866078
\(956\) 38.1883 1.23510
\(957\) 22.3300 0.721828
\(958\) −15.1235 −0.488619
\(959\) −6.24566 −0.201683
\(960\) −2.37904 −0.0767833
\(961\) 7.20922 0.232556
\(962\) −2.77444 −0.0894515
\(963\) 15.4673 0.498428
\(964\) −18.3911 −0.592338
\(965\) −0.738001 −0.0237571
\(966\) 13.1977 0.424629
\(967\) −36.0543 −1.15943 −0.579714 0.814820i \(-0.696836\pi\)
−0.579714 + 0.814820i \(0.696836\pi\)
\(968\) −10.1564 −0.326440
\(969\) 7.89486 0.253620
\(970\) −1.01739 −0.0326664
\(971\) −1.13069 −0.0362854 −0.0181427 0.999835i \(-0.505775\pi\)
−0.0181427 + 0.999835i \(0.505775\pi\)
\(972\) −2.27016 −0.0728154
\(973\) 12.6046 0.404086
\(974\) −51.7418 −1.65791
\(975\) 1.17656 0.0376802
\(976\) 8.65684 0.277099
\(977\) 11.3062 0.361718 0.180859 0.983509i \(-0.442112\pi\)
0.180859 + 0.983509i \(0.442112\pi\)
\(978\) −5.24941 −0.167858
\(979\) 34.9901 1.11829
\(980\) −0.540319 −0.0172599
\(981\) 1.37530 0.0439098
\(982\) −73.3810 −2.34168
\(983\) −25.7140 −0.820151 −0.410075 0.912052i \(-0.634498\pi\)
−0.410075 + 0.912052i \(0.634498\pi\)
\(984\) −3.51838 −0.112162
\(985\) −1.55172 −0.0494418
\(986\) 8.54032 0.271979
\(987\) −6.18136 −0.196755
\(988\) 4.26575 0.135711
\(989\) 69.3768 2.20605
\(990\) −2.65738 −0.0844571
\(991\) 10.4356 0.331497 0.165748 0.986168i \(-0.446996\pi\)
0.165748 + 0.986168i \(0.446996\pi\)
\(992\) 50.1613 1.59262
\(993\) −30.1764 −0.957620
\(994\) −20.0970 −0.637437
\(995\) 1.81864 0.0576547
\(996\) −12.3943 −0.392730
\(997\) 28.6480 0.907293 0.453646 0.891182i \(-0.350123\pi\)
0.453646 + 0.891182i \(0.350123\pi\)
\(998\) −43.6526 −1.38180
\(999\) −5.64104 −0.178475
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 357.2.a.h.1.1 4
3.2 odd 2 1071.2.a.j.1.4 4
4.3 odd 2 5712.2.a.bx.1.3 4
5.4 even 2 8925.2.a.bs.1.4 4
7.6 odd 2 2499.2.a.z.1.1 4
17.16 even 2 6069.2.a.s.1.1 4
21.20 even 2 7497.2.a.be.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.a.h.1.1 4 1.1 even 1 trivial
1071.2.a.j.1.4 4 3.2 odd 2
2499.2.a.z.1.1 4 7.6 odd 2
5712.2.a.bx.1.3 4 4.3 odd 2
6069.2.a.s.1.1 4 17.16 even 2
7497.2.a.be.1.4 4 21.20 even 2
8925.2.a.bs.1.4 4 5.4 even 2