Properties

Label 8925.2.a.bs.1.4
Level $8925$
Weight $2$
Character 8925.1
Self dual yes
Analytic conductor $71.266$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8925,2,Mod(1,8925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8925 = 3 \cdot 5^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.2664838040\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.7232.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 5x^{2} + 4x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 357)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.652223\) of defining polynomial
Character \(\chi\) \(=\) 8925.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.06644 q^{2} +1.00000 q^{3} +2.27016 q^{4} +2.06644 q^{6} -1.00000 q^{7} +0.558268 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+2.06644 q^{2} +1.00000 q^{3} +2.27016 q^{4} +2.06644 q^{6} -1.00000 q^{7} +0.558268 q^{8} +1.00000 q^{9} -5.40303 q^{11} +2.27016 q^{12} -0.238009 q^{13} -2.06644 q^{14} -3.38669 q^{16} +1.00000 q^{17} +2.06644 q^{18} +7.89486 q^{19} -1.00000 q^{21} -11.1650 q^{22} -6.38669 q^{23} +0.558268 q^{24} -0.491831 q^{26} +1.00000 q^{27} -2.27016 q^{28} +4.13287 q^{29} +6.18136 q^{31} -8.11492 q^{32} -5.40303 q^{33} +2.06644 q^{34} +2.27016 q^{36} -5.64104 q^{37} +16.3142 q^{38} -0.238009 q^{39} -6.30231 q^{41} -2.06644 q^{42} -10.8627 q^{43} -12.2657 q^{44} -13.1977 q^{46} -6.18136 q^{47} -3.38669 q^{48} +1.00000 q^{49} +1.00000 q^{51} -0.540319 q^{52} -12.1814 q^{53} +2.06644 q^{54} -0.558268 q^{56} +7.89486 q^{57} +8.54032 q^{58} -4.14869 q^{59} -2.55613 q^{61} +12.7734 q^{62} -1.00000 q^{63} -9.99559 q^{64} -11.1650 q^{66} -5.45968 q^{67} +2.27016 q^{68} -6.38669 q^{69} +9.72543 q^{71} +0.558268 q^{72} +14.9389 q^{73} -11.6569 q^{74} +17.9226 q^{76} +5.40303 q^{77} -0.491831 q^{78} -16.8904 q^{79} +1.00000 q^{81} -13.0233 q^{82} -5.45968 q^{83} -2.27016 q^{84} -22.4471 q^{86} +4.13287 q^{87} -3.01634 q^{88} -6.47602 q^{89} +0.238009 q^{91} -14.4988 q^{92} +6.18136 q^{93} -12.7734 q^{94} -8.11492 q^{96} +2.06857 q^{97} +2.06644 q^{98} -5.40303 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 4 q^{3} + 6 q^{4} - 2 q^{6} - 4 q^{7} - 6 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} + 4 q^{3} + 6 q^{4} - 2 q^{6} - 4 q^{7} - 6 q^{8} + 4 q^{9} + 2 q^{11} + 6 q^{12} - 2 q^{13} + 2 q^{14} + 6 q^{16} + 4 q^{17} - 2 q^{18} + 10 q^{19} - 4 q^{21} - 20 q^{22} - 6 q^{23} - 6 q^{24} - 4 q^{26} + 4 q^{27} - 6 q^{28} - 4 q^{29} - 4 q^{31} - 14 q^{32} + 2 q^{33} - 2 q^{34} + 6 q^{36} + 16 q^{38} - 2 q^{39} - 18 q^{41} + 2 q^{42} - 26 q^{43} - 8 q^{44} - 20 q^{46} + 4 q^{47} + 6 q^{48} + 4 q^{49} + 4 q^{51} + 4 q^{52} - 20 q^{53} - 2 q^{54} + 6 q^{56} + 10 q^{57} + 28 q^{58} + 4 q^{59} - 4 q^{61} + 12 q^{62} - 4 q^{63} - 2 q^{64} - 20 q^{66} - 28 q^{67} + 6 q^{68} - 6 q^{69} + 4 q^{71} - 6 q^{72} - 8 q^{73} - 24 q^{74} + 8 q^{76} - 2 q^{77} - 4 q^{78} - 8 q^{79} + 4 q^{81} + 28 q^{82} - 28 q^{83} - 6 q^{84} - 20 q^{86} - 4 q^{87} - 8 q^{88} - 28 q^{89} + 2 q^{91} + 16 q^{92} - 4 q^{93} - 12 q^{94} - 14 q^{96} - 4 q^{97} - 2 q^{98} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.06644 1.46119 0.730596 0.682810i \(-0.239243\pi\)
0.730596 + 0.682810i \(0.239243\pi\)
\(3\) 1.00000 0.577350
\(4\) 2.27016 1.13508
\(5\) 0 0
\(6\) 2.06644 0.843619
\(7\) −1.00000 −0.377964
\(8\) 0.558268 0.197377
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −5.40303 −1.62908 −0.814538 0.580110i \(-0.803009\pi\)
−0.814538 + 0.580110i \(0.803009\pi\)
\(12\) 2.27016 0.655339
\(13\) −0.238009 −0.0660119 −0.0330060 0.999455i \(-0.510508\pi\)
−0.0330060 + 0.999455i \(0.510508\pi\)
\(14\) −2.06644 −0.552278
\(15\) 0 0
\(16\) −3.38669 −0.846674
\(17\) 1.00000 0.242536
\(18\) 2.06644 0.487064
\(19\) 7.89486 1.81121 0.905603 0.424126i \(-0.139419\pi\)
0.905603 + 0.424126i \(0.139419\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) −11.1650 −2.38039
\(23\) −6.38669 −1.33172 −0.665859 0.746078i \(-0.731935\pi\)
−0.665859 + 0.746078i \(0.731935\pi\)
\(24\) 0.558268 0.113956
\(25\) 0 0
\(26\) −0.491831 −0.0964560
\(27\) 1.00000 0.192450
\(28\) −2.27016 −0.429020
\(29\) 4.13287 0.767455 0.383728 0.923446i \(-0.374640\pi\)
0.383728 + 0.923446i \(0.374640\pi\)
\(30\) 0 0
\(31\) 6.18136 1.11021 0.555103 0.831782i \(-0.312679\pi\)
0.555103 + 0.831782i \(0.312679\pi\)
\(32\) −8.11492 −1.43453
\(33\) −5.40303 −0.940547
\(34\) 2.06644 0.354391
\(35\) 0 0
\(36\) 2.27016 0.378360
\(37\) −5.64104 −0.927382 −0.463691 0.885997i \(-0.653475\pi\)
−0.463691 + 0.885997i \(0.653475\pi\)
\(38\) 16.3142 2.64652
\(39\) −0.238009 −0.0381120
\(40\) 0 0
\(41\) −6.30231 −0.984255 −0.492128 0.870523i \(-0.663781\pi\)
−0.492128 + 0.870523i \(0.663781\pi\)
\(42\) −2.06644 −0.318858
\(43\) −10.8627 −1.65655 −0.828274 0.560323i \(-0.810677\pi\)
−0.828274 + 0.560323i \(0.810677\pi\)
\(44\) −12.2657 −1.84913
\(45\) 0 0
\(46\) −13.1977 −1.94589
\(47\) −6.18136 −0.901644 −0.450822 0.892614i \(-0.648869\pi\)
−0.450822 + 0.892614i \(0.648869\pi\)
\(48\) −3.38669 −0.488827
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) −0.540319 −0.0749288
\(53\) −12.1814 −1.67324 −0.836619 0.547785i \(-0.815471\pi\)
−0.836619 + 0.547785i \(0.815471\pi\)
\(54\) 2.06644 0.281206
\(55\) 0 0
\(56\) −0.558268 −0.0746016
\(57\) 7.89486 1.04570
\(58\) 8.54032 1.12140
\(59\) −4.14869 −0.540113 −0.270056 0.962845i \(-0.587042\pi\)
−0.270056 + 0.962845i \(0.587042\pi\)
\(60\) 0 0
\(61\) −2.55613 −0.327279 −0.163640 0.986520i \(-0.552323\pi\)
−0.163640 + 0.986520i \(0.552323\pi\)
\(62\) 12.7734 1.62222
\(63\) −1.00000 −0.125988
\(64\) −9.99559 −1.24945
\(65\) 0 0
\(66\) −11.1650 −1.37432
\(67\) −5.45968 −0.667006 −0.333503 0.942749i \(-0.608231\pi\)
−0.333503 + 0.942749i \(0.608231\pi\)
\(68\) 2.27016 0.275297
\(69\) −6.38669 −0.768868
\(70\) 0 0
\(71\) 9.72543 1.15420 0.577098 0.816675i \(-0.304185\pi\)
0.577098 + 0.816675i \(0.304185\pi\)
\(72\) 0.558268 0.0657925
\(73\) 14.9389 1.74847 0.874235 0.485503i \(-0.161363\pi\)
0.874235 + 0.485503i \(0.161363\pi\)
\(74\) −11.6569 −1.35508
\(75\) 0 0
\(76\) 17.9226 2.05586
\(77\) 5.40303 0.615733
\(78\) −0.491831 −0.0556889
\(79\) −16.8904 −1.90032 −0.950162 0.311756i \(-0.899083\pi\)
−0.950162 + 0.311756i \(0.899083\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −13.0233 −1.43819
\(83\) −5.45968 −0.599278 −0.299639 0.954053i \(-0.596866\pi\)
−0.299639 + 0.954053i \(0.596866\pi\)
\(84\) −2.27016 −0.247695
\(85\) 0 0
\(86\) −22.4471 −2.42053
\(87\) 4.13287 0.443090
\(88\) −3.01634 −0.321543
\(89\) −6.47602 −0.686457 −0.343228 0.939252i \(-0.611520\pi\)
−0.343228 + 0.939252i \(0.611520\pi\)
\(90\) 0 0
\(91\) 0.238009 0.0249502
\(92\) −14.4988 −1.51161
\(93\) 6.18136 0.640977
\(94\) −12.7734 −1.31747
\(95\) 0 0
\(96\) −8.11492 −0.828226
\(97\) 2.06857 0.210032 0.105016 0.994471i \(-0.466511\pi\)
0.105016 + 0.994471i \(0.466511\pi\)
\(98\) 2.06644 0.208742
\(99\) −5.40303 −0.543025
\(100\) 0 0
\(101\) 9.43077 0.938397 0.469198 0.883093i \(-0.344543\pi\)
0.469198 + 0.883093i \(0.344543\pi\)
\(102\) 2.06644 0.204608
\(103\) 8.46786 0.834363 0.417181 0.908823i \(-0.363018\pi\)
0.417181 + 0.908823i \(0.363018\pi\)
\(104\) −0.132873 −0.0130293
\(105\) 0 0
\(106\) −25.1720 −2.44492
\(107\) −15.4673 −1.49528 −0.747642 0.664102i \(-0.768814\pi\)
−0.747642 + 0.664102i \(0.768814\pi\)
\(108\) 2.27016 0.218446
\(109\) 1.37530 0.131729 0.0658647 0.997829i \(-0.479019\pi\)
0.0658647 + 0.997829i \(0.479019\pi\)
\(110\) 0 0
\(111\) −5.64104 −0.535424
\(112\) 3.38669 0.320013
\(113\) −10.6165 −0.998720 −0.499360 0.866394i \(-0.666432\pi\)
−0.499360 + 0.866394i \(0.666432\pi\)
\(114\) 16.3142 1.52797
\(115\) 0 0
\(116\) 9.38228 0.871123
\(117\) −0.238009 −0.0220040
\(118\) −8.57299 −0.789208
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) 18.1928 1.65389
\(122\) −5.28208 −0.478217
\(123\) −6.30231 −0.568260
\(124\) 14.0327 1.26017
\(125\) 0 0
\(126\) −2.06644 −0.184093
\(127\) 2.38669 0.211785 0.105892 0.994378i \(-0.466230\pi\)
0.105892 + 0.994378i \(0.466230\pi\)
\(128\) −4.42539 −0.391153
\(129\) −10.8627 −0.956409
\(130\) 0 0
\(131\) −13.0757 −1.14243 −0.571215 0.820801i \(-0.693528\pi\)
−0.571215 + 0.820801i \(0.693528\pi\)
\(132\) −12.2657 −1.06760
\(133\) −7.89486 −0.684571
\(134\) −11.2821 −0.974624
\(135\) 0 0
\(136\) 0.558268 0.0478710
\(137\) 6.24566 0.533603 0.266801 0.963752i \(-0.414033\pi\)
0.266801 + 0.963752i \(0.414033\pi\)
\(138\) −13.1977 −1.12346
\(139\) 12.6046 1.06911 0.534555 0.845134i \(-0.320479\pi\)
0.534555 + 0.845134i \(0.320479\pi\)
\(140\) 0 0
\(141\) −6.18136 −0.520564
\(142\) 20.0970 1.68650
\(143\) 1.28597 0.107538
\(144\) −3.38669 −0.282225
\(145\) 0 0
\(146\) 30.8704 2.55485
\(147\) 1.00000 0.0824786
\(148\) −12.8061 −1.05265
\(149\) −2.09698 −0.171791 −0.0858955 0.996304i \(-0.527375\pi\)
−0.0858955 + 0.996304i \(0.527375\pi\)
\(150\) 0 0
\(151\) 8.60462 0.700234 0.350117 0.936706i \(-0.386142\pi\)
0.350117 + 0.936706i \(0.386142\pi\)
\(152\) 4.40745 0.357491
\(153\) 1.00000 0.0808452
\(154\) 11.1650 0.899703
\(155\) 0 0
\(156\) −0.540319 −0.0432602
\(157\) −13.1084 −1.04616 −0.523081 0.852283i \(-0.675218\pi\)
−0.523081 + 0.852283i \(0.675218\pi\)
\(158\) −34.9030 −2.77674
\(159\) −12.1814 −0.966045
\(160\) 0 0
\(161\) 6.38669 0.503342
\(162\) 2.06644 0.162355
\(163\) 2.54032 0.198973 0.0994866 0.995039i \(-0.468280\pi\)
0.0994866 + 0.995039i \(0.468280\pi\)
\(164\) −14.3072 −1.11721
\(165\) 0 0
\(166\) −11.2821 −0.875660
\(167\) −14.5038 −1.12233 −0.561167 0.827703i \(-0.689648\pi\)
−0.561167 + 0.827703i \(0.689648\pi\)
\(168\) −0.558268 −0.0430713
\(169\) −12.9434 −0.995642
\(170\) 0 0
\(171\) 7.89486 0.603735
\(172\) −24.6601 −1.88031
\(173\) 9.58439 0.728688 0.364344 0.931264i \(-0.381293\pi\)
0.364344 + 0.931264i \(0.381293\pi\)
\(174\) 8.54032 0.647440
\(175\) 0 0
\(176\) 18.2984 1.37930
\(177\) −4.14869 −0.311834
\(178\) −13.3823 −1.00304
\(179\) −10.3986 −0.777229 −0.388615 0.921400i \(-0.627046\pi\)
−0.388615 + 0.921400i \(0.627046\pi\)
\(180\) 0 0
\(181\) −18.9389 −1.40772 −0.703860 0.710339i \(-0.748542\pi\)
−0.703860 + 0.710339i \(0.748542\pi\)
\(182\) 0.491831 0.0364569
\(183\) −2.55613 −0.188955
\(184\) −3.56548 −0.262851
\(185\) 0 0
\(186\) 12.7734 0.936590
\(187\) −5.40303 −0.395109
\(188\) −14.0327 −1.02344
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) −11.2451 −0.813669 −0.406835 0.913502i \(-0.633368\pi\)
−0.406835 + 0.913502i \(0.633368\pi\)
\(192\) −9.99559 −0.721369
\(193\) −3.10072 −0.223195 −0.111597 0.993753i \(-0.535597\pi\)
−0.111597 + 0.993753i \(0.535597\pi\)
\(194\) 4.27457 0.306896
\(195\) 0 0
\(196\) 2.27016 0.162154
\(197\) −6.51957 −0.464500 −0.232250 0.972656i \(-0.574609\pi\)
−0.232250 + 0.972656i \(0.574609\pi\)
\(198\) −11.1650 −0.793464
\(199\) −7.64104 −0.541659 −0.270830 0.962627i \(-0.587298\pi\)
−0.270830 + 0.962627i \(0.587298\pi\)
\(200\) 0 0
\(201\) −5.45968 −0.385096
\(202\) 19.4881 1.37118
\(203\) −4.13287 −0.290071
\(204\) 2.27016 0.158943
\(205\) 0 0
\(206\) 17.4983 1.21916
\(207\) −6.38669 −0.443906
\(208\) 0.806065 0.0558905
\(209\) −42.6562 −2.95059
\(210\) 0 0
\(211\) −2.29466 −0.157971 −0.0789854 0.996876i \(-0.525168\pi\)
−0.0789854 + 0.996876i \(0.525168\pi\)
\(212\) −27.6536 −1.89926
\(213\) 9.72543 0.666375
\(214\) −31.9623 −2.18490
\(215\) 0 0
\(216\) 0.558268 0.0379853
\(217\) −6.18136 −0.419618
\(218\) 2.84196 0.192482
\(219\) 14.9389 1.00948
\(220\) 0 0
\(221\) −0.238009 −0.0160102
\(222\) −11.6569 −0.782357
\(223\) 17.2729 1.15668 0.578339 0.815797i \(-0.303701\pi\)
0.578339 + 0.815797i \(0.303701\pi\)
\(224\) 8.11492 0.542201
\(225\) 0 0
\(226\) −21.9384 −1.45932
\(227\) −12.7783 −0.848127 −0.424064 0.905632i \(-0.639397\pi\)
−0.424064 + 0.905632i \(0.639397\pi\)
\(228\) 17.9226 1.18695
\(229\) 18.8704 1.24699 0.623494 0.781828i \(-0.285712\pi\)
0.623494 + 0.781828i \(0.285712\pi\)
\(230\) 0 0
\(231\) 5.40303 0.355493
\(232\) 2.30725 0.151478
\(233\) 9.09151 0.595605 0.297802 0.954628i \(-0.403746\pi\)
0.297802 + 0.954628i \(0.403746\pi\)
\(234\) −0.491831 −0.0321520
\(235\) 0 0
\(236\) −9.41818 −0.613071
\(237\) −16.8904 −1.09715
\(238\) −2.06644 −0.133947
\(239\) 16.8219 1.08812 0.544058 0.839047i \(-0.316887\pi\)
0.544058 + 0.839047i \(0.316887\pi\)
\(240\) 0 0
\(241\) −8.10125 −0.521847 −0.260924 0.965359i \(-0.584027\pi\)
−0.260924 + 0.965359i \(0.584027\pi\)
\(242\) 37.5942 2.41665
\(243\) 1.00000 0.0641500
\(244\) −5.80283 −0.371488
\(245\) 0 0
\(246\) −13.0233 −0.830337
\(247\) −1.87905 −0.119561
\(248\) 3.45085 0.219129
\(249\) −5.45968 −0.345993
\(250\) 0 0
\(251\) −2.68900 −0.169728 −0.0848642 0.996393i \(-0.527046\pi\)
−0.0848642 + 0.996393i \(0.527046\pi\)
\(252\) −2.27016 −0.143007
\(253\) 34.5075 2.16947
\(254\) 4.93195 0.309458
\(255\) 0 0
\(256\) 10.8464 0.677898
\(257\) 20.5441 1.28150 0.640752 0.767748i \(-0.278623\pi\)
0.640752 + 0.767748i \(0.278623\pi\)
\(258\) −22.4471 −1.39750
\(259\) 5.64104 0.350517
\(260\) 0 0
\(261\) 4.13287 0.255818
\(262\) −27.0201 −1.66931
\(263\) −11.4554 −0.706371 −0.353185 0.935553i \(-0.614902\pi\)
−0.353185 + 0.935553i \(0.614902\pi\)
\(264\) −3.01634 −0.185643
\(265\) 0 0
\(266\) −16.3142 −1.00029
\(267\) −6.47602 −0.396326
\(268\) −12.3943 −0.757105
\(269\) −23.5201 −1.43405 −0.717023 0.697050i \(-0.754496\pi\)
−0.717023 + 0.697050i \(0.754496\pi\)
\(270\) 0 0
\(271\) 27.4743 1.66895 0.834473 0.551049i \(-0.185772\pi\)
0.834473 + 0.551049i \(0.185772\pi\)
\(272\) −3.38669 −0.205349
\(273\) 0.238009 0.0144050
\(274\) 12.9063 0.779696
\(275\) 0 0
\(276\) −14.4988 −0.872726
\(277\) −9.01634 −0.541739 −0.270870 0.962616i \(-0.587311\pi\)
−0.270870 + 0.962616i \(0.587311\pi\)
\(278\) 26.0466 1.56217
\(279\) 6.18136 0.370068
\(280\) 0 0
\(281\) 9.78973 0.584006 0.292003 0.956417i \(-0.405678\pi\)
0.292003 + 0.956417i \(0.405678\pi\)
\(282\) −12.7734 −0.760644
\(283\) 12.1487 0.722164 0.361082 0.932534i \(-0.382407\pi\)
0.361082 + 0.932534i \(0.382407\pi\)
\(284\) 22.0783 1.31010
\(285\) 0 0
\(286\) 2.65738 0.157134
\(287\) 6.30231 0.372014
\(288\) −8.11492 −0.478177
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 2.06857 0.121262
\(292\) 33.9138 1.98465
\(293\) 27.7254 1.61974 0.809868 0.586612i \(-0.199538\pi\)
0.809868 + 0.586612i \(0.199538\pi\)
\(294\) 2.06644 0.120517
\(295\) 0 0
\(296\) −3.14921 −0.183044
\(297\) −5.40303 −0.313516
\(298\) −4.33327 −0.251019
\(299\) 1.52009 0.0879092
\(300\) 0 0
\(301\) 10.8627 0.626116
\(302\) 17.7809 1.02318
\(303\) 9.43077 0.541784
\(304\) −26.7375 −1.53350
\(305\) 0 0
\(306\) 2.06644 0.118130
\(307\) −3.29518 −0.188066 −0.0940330 0.995569i \(-0.529976\pi\)
−0.0940330 + 0.995569i \(0.529976\pi\)
\(308\) 12.2657 0.698906
\(309\) 8.46786 0.481720
\(310\) 0 0
\(311\) 7.18511 0.407430 0.203715 0.979030i \(-0.434698\pi\)
0.203715 + 0.979030i \(0.434698\pi\)
\(312\) −0.132873 −0.00752245
\(313\) 30.3697 1.71660 0.858299 0.513150i \(-0.171522\pi\)
0.858299 + 0.513150i \(0.171522\pi\)
\(314\) −27.0876 −1.52864
\(315\) 0 0
\(316\) −38.3440 −2.15702
\(317\) 16.8746 0.947774 0.473887 0.880586i \(-0.342851\pi\)
0.473887 + 0.880586i \(0.342851\pi\)
\(318\) −25.1720 −1.41158
\(319\) −22.3300 −1.25024
\(320\) 0 0
\(321\) −15.4673 −0.863302
\(322\) 13.1977 0.735479
\(323\) 7.89486 0.439282
\(324\) 2.27016 0.126120
\(325\) 0 0
\(326\) 5.24941 0.290738
\(327\) 1.37530 0.0760540
\(328\) −3.51838 −0.194270
\(329\) 6.18136 0.340789
\(330\) 0 0
\(331\) 30.1764 1.65865 0.829323 0.558769i \(-0.188726\pi\)
0.829323 + 0.558769i \(0.188726\pi\)
\(332\) −12.3943 −0.680228
\(333\) −5.64104 −0.309127
\(334\) −29.9711 −1.63994
\(335\) 0 0
\(336\) 3.38669 0.184759
\(337\) −0.478732 −0.0260782 −0.0130391 0.999915i \(-0.504151\pi\)
−0.0130391 + 0.999915i \(0.504151\pi\)
\(338\) −26.7466 −1.45482
\(339\) −10.6165 −0.576611
\(340\) 0 0
\(341\) −33.3981 −1.80861
\(342\) 16.3142 0.882173
\(343\) −1.00000 −0.0539949
\(344\) −6.06430 −0.326965
\(345\) 0 0
\(346\) 19.8055 1.06475
\(347\) 5.82240 0.312563 0.156281 0.987713i \(-0.450049\pi\)
0.156281 + 0.987713i \(0.450049\pi\)
\(348\) 9.38228 0.502943
\(349\) −0.416657 −0.0223031 −0.0111516 0.999938i \(-0.503550\pi\)
−0.0111516 + 0.999938i \(0.503550\pi\)
\(350\) 0 0
\(351\) −0.238009 −0.0127040
\(352\) 43.8452 2.33696
\(353\) −1.37530 −0.0731996 −0.0365998 0.999330i \(-0.511653\pi\)
−0.0365998 + 0.999330i \(0.511653\pi\)
\(354\) −8.57299 −0.455650
\(355\) 0 0
\(356\) −14.7016 −0.779183
\(357\) −1.00000 −0.0529256
\(358\) −21.4881 −1.13568
\(359\) −5.41119 −0.285592 −0.142796 0.989752i \(-0.545609\pi\)
−0.142796 + 0.989752i \(0.545609\pi\)
\(360\) 0 0
\(361\) 43.3289 2.28047
\(362\) −39.1361 −2.05695
\(363\) 18.1928 0.954872
\(364\) 0.540319 0.0283204
\(365\) 0 0
\(366\) −5.28208 −0.276099
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 21.6298 1.12753
\(369\) −6.30231 −0.328085
\(370\) 0 0
\(371\) 12.1814 0.632425
\(372\) 14.0327 0.727560
\(373\) −16.8061 −0.870185 −0.435093 0.900386i \(-0.643284\pi\)
−0.435093 + 0.900386i \(0.643284\pi\)
\(374\) −11.1650 −0.577330
\(375\) 0 0
\(376\) −3.45085 −0.177964
\(377\) −0.983662 −0.0506612
\(378\) −2.06644 −0.106286
\(379\) −13.9673 −0.717453 −0.358727 0.933443i \(-0.616789\pi\)
−0.358727 + 0.933443i \(0.616789\pi\)
\(380\) 0 0
\(381\) 2.38669 0.122274
\(382\) −23.2374 −1.18893
\(383\) 19.7696 1.01018 0.505091 0.863066i \(-0.331459\pi\)
0.505091 + 0.863066i \(0.331459\pi\)
\(384\) −4.42539 −0.225832
\(385\) 0 0
\(386\) −6.40745 −0.326130
\(387\) −10.8627 −0.552183
\(388\) 4.69599 0.238403
\(389\) 19.8224 1.00504 0.502518 0.864567i \(-0.332407\pi\)
0.502518 + 0.864567i \(0.332407\pi\)
\(390\) 0 0
\(391\) −6.38669 −0.322989
\(392\) 0.558268 0.0281968
\(393\) −13.0757 −0.659582
\(394\) −13.4723 −0.678723
\(395\) 0 0
\(396\) −12.2657 −0.616377
\(397\) −34.2411 −1.71851 −0.859256 0.511546i \(-0.829073\pi\)
−0.859256 + 0.511546i \(0.829073\pi\)
\(398\) −15.7897 −0.791468
\(399\) −7.89486 −0.395238
\(400\) 0 0
\(401\) 2.96396 0.148013 0.0740066 0.997258i \(-0.476421\pi\)
0.0740066 + 0.997258i \(0.476421\pi\)
\(402\) −11.2821 −0.562699
\(403\) −1.47122 −0.0732868
\(404\) 21.4094 1.06515
\(405\) 0 0
\(406\) −8.54032 −0.423849
\(407\) 30.4787 1.51077
\(408\) 0.558268 0.0276384
\(409\) 35.2128 1.74116 0.870582 0.492024i \(-0.163743\pi\)
0.870582 + 0.492024i \(0.163743\pi\)
\(410\) 0 0
\(411\) 6.24566 0.308076
\(412\) 19.2234 0.947068
\(413\) 4.14869 0.204143
\(414\) −13.1977 −0.648632
\(415\) 0 0
\(416\) 1.93143 0.0946960
\(417\) 12.6046 0.617251
\(418\) −88.1463 −4.31138
\(419\) −13.0391 −0.637003 −0.318502 0.947922i \(-0.603180\pi\)
−0.318502 + 0.947922i \(0.603180\pi\)
\(420\) 0 0
\(421\) −24.6763 −1.20265 −0.601324 0.799005i \(-0.705360\pi\)
−0.601324 + 0.799005i \(0.705360\pi\)
\(422\) −4.74176 −0.230825
\(423\) −6.18136 −0.300548
\(424\) −6.80046 −0.330259
\(425\) 0 0
\(426\) 20.0970 0.973702
\(427\) 2.55613 0.123700
\(428\) −35.1133 −1.69727
\(429\) 1.28597 0.0620873
\(430\) 0 0
\(431\) 0.265746 0.0128005 0.00640026 0.999980i \(-0.497963\pi\)
0.00640026 + 0.999980i \(0.497963\pi\)
\(432\) −3.38669 −0.162942
\(433\) −15.9961 −0.768724 −0.384362 0.923182i \(-0.625579\pi\)
−0.384362 + 0.923182i \(0.625579\pi\)
\(434\) −12.7734 −0.613142
\(435\) 0 0
\(436\) 3.12214 0.149523
\(437\) −50.4221 −2.41202
\(438\) 30.8704 1.47504
\(439\) 6.82615 0.325794 0.162897 0.986643i \(-0.447916\pi\)
0.162897 + 0.986643i \(0.447916\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) −0.491831 −0.0233940
\(443\) −21.3295 −1.01340 −0.506698 0.862124i \(-0.669134\pi\)
−0.506698 + 0.862124i \(0.669134\pi\)
\(444\) −12.8061 −0.607749
\(445\) 0 0
\(446\) 35.6933 1.69013
\(447\) −2.09698 −0.0991836
\(448\) 9.99559 0.472247
\(449\) 4.49559 0.212160 0.106080 0.994358i \(-0.466170\pi\)
0.106080 + 0.994358i \(0.466170\pi\)
\(450\) 0 0
\(451\) 34.0516 1.60343
\(452\) −24.1012 −1.13363
\(453\) 8.60462 0.404280
\(454\) −26.4056 −1.23928
\(455\) 0 0
\(456\) 4.40745 0.206398
\(457\) −4.69394 −0.219573 −0.109787 0.993955i \(-0.535017\pi\)
−0.109787 + 0.993955i \(0.535017\pi\)
\(458\) 38.9944 1.82209
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) 12.9548 0.603363 0.301681 0.953409i \(-0.402452\pi\)
0.301681 + 0.953409i \(0.402452\pi\)
\(462\) 11.1650 0.519444
\(463\) 22.7744 1.05842 0.529209 0.848492i \(-0.322489\pi\)
0.529209 + 0.848492i \(0.322489\pi\)
\(464\) −13.9968 −0.649784
\(465\) 0 0
\(466\) 18.7870 0.870292
\(467\) 40.4498 1.87179 0.935897 0.352273i \(-0.114591\pi\)
0.935897 + 0.352273i \(0.114591\pi\)
\(468\) −0.540319 −0.0249763
\(469\) 5.45968 0.252105
\(470\) 0 0
\(471\) −13.1084 −0.604002
\(472\) −2.31608 −0.106606
\(473\) 58.6916 2.69864
\(474\) −34.9030 −1.60315
\(475\) 0 0
\(476\) −2.27016 −0.104053
\(477\) −12.1814 −0.557746
\(478\) 34.7613 1.58995
\(479\) 7.31865 0.334398 0.167199 0.985923i \(-0.446528\pi\)
0.167199 + 0.985923i \(0.446528\pi\)
\(480\) 0 0
\(481\) 1.34262 0.0612182
\(482\) −16.7407 −0.762519
\(483\) 6.38669 0.290605
\(484\) 41.3005 1.87729
\(485\) 0 0
\(486\) 2.06644 0.0937355
\(487\) −25.0391 −1.13463 −0.567316 0.823500i \(-0.692018\pi\)
−0.567316 + 0.823500i \(0.692018\pi\)
\(488\) −1.42701 −0.0645975
\(489\) 2.54032 0.114877
\(490\) 0 0
\(491\) 35.5109 1.60258 0.801292 0.598274i \(-0.204146\pi\)
0.801292 + 0.598274i \(0.204146\pi\)
\(492\) −14.3072 −0.645021
\(493\) 4.13287 0.186135
\(494\) −3.88294 −0.174702
\(495\) 0 0
\(496\) −20.9344 −0.939982
\(497\) −9.72543 −0.436245
\(498\) −11.2821 −0.505562
\(499\) 21.1246 0.945666 0.472833 0.881152i \(-0.343231\pi\)
0.472833 + 0.881152i \(0.343231\pi\)
\(500\) 0 0
\(501\) −14.5038 −0.647980
\(502\) −5.55666 −0.248006
\(503\) −31.4296 −1.40138 −0.700688 0.713468i \(-0.747124\pi\)
−0.700688 + 0.713468i \(0.747124\pi\)
\(504\) −0.558268 −0.0248672
\(505\) 0 0
\(506\) 71.3076 3.17001
\(507\) −12.9434 −0.574834
\(508\) 5.41818 0.240393
\(509\) −3.19394 −0.141569 −0.0707843 0.997492i \(-0.522550\pi\)
−0.0707843 + 0.997492i \(0.522550\pi\)
\(510\) 0 0
\(511\) −14.9389 −0.660860
\(512\) 31.2641 1.38169
\(513\) 7.89486 0.348567
\(514\) 42.4530 1.87252
\(515\) 0 0
\(516\) −24.6601 −1.08560
\(517\) 33.3981 1.46885
\(518\) 11.6569 0.512173
\(519\) 9.58439 0.420708
\(520\) 0 0
\(521\) 19.2782 0.844593 0.422297 0.906458i \(-0.361224\pi\)
0.422297 + 0.906458i \(0.361224\pi\)
\(522\) 8.54032 0.373800
\(523\) −6.51192 −0.284746 −0.142373 0.989813i \(-0.545473\pi\)
−0.142373 + 0.989813i \(0.545473\pi\)
\(524\) −29.6839 −1.29675
\(525\) 0 0
\(526\) −23.6719 −1.03214
\(527\) 6.18136 0.269264
\(528\) 18.2984 0.796337
\(529\) 17.7899 0.773473
\(530\) 0 0
\(531\) −4.14869 −0.180038
\(532\) −17.9226 −0.777043
\(533\) 1.50001 0.0649726
\(534\) −13.3823 −0.579108
\(535\) 0 0
\(536\) −3.04796 −0.131652
\(537\) −10.3986 −0.448734
\(538\) −48.6028 −2.09541
\(539\) −5.40303 −0.232725
\(540\) 0 0
\(541\) −17.7265 −0.762121 −0.381060 0.924550i \(-0.624441\pi\)
−0.381060 + 0.924550i \(0.624441\pi\)
\(542\) 56.7739 2.43865
\(543\) −18.9389 −0.812748
\(544\) −8.11492 −0.347925
\(545\) 0 0
\(546\) 0.491831 0.0210484
\(547\) 15.2620 0.652556 0.326278 0.945274i \(-0.394205\pi\)
0.326278 + 0.945274i \(0.394205\pi\)
\(548\) 14.1786 0.605682
\(549\) −2.55613 −0.109093
\(550\) 0 0
\(551\) 32.6285 1.39002
\(552\) −3.56548 −0.151757
\(553\) 16.8904 0.718255
\(554\) −18.6317 −0.791585
\(555\) 0 0
\(556\) 28.6145 1.21353
\(557\) 33.0102 1.39869 0.699344 0.714785i \(-0.253476\pi\)
0.699344 + 0.714785i \(0.253476\pi\)
\(558\) 12.7734 0.540741
\(559\) 2.58543 0.109352
\(560\) 0 0
\(561\) −5.40303 −0.228116
\(562\) 20.2298 0.853345
\(563\) −1.49131 −0.0628510 −0.0314255 0.999506i \(-0.510005\pi\)
−0.0314255 + 0.999506i \(0.510005\pi\)
\(564\) −14.0327 −0.590882
\(565\) 0 0
\(566\) 25.1045 1.05522
\(567\) −1.00000 −0.0419961
\(568\) 5.42939 0.227812
\(569\) 0.242948 0.0101849 0.00509246 0.999987i \(-0.498379\pi\)
0.00509246 + 0.999987i \(0.498379\pi\)
\(570\) 0 0
\(571\) −23.2505 −0.973001 −0.486501 0.873680i \(-0.661727\pi\)
−0.486501 + 0.873680i \(0.661727\pi\)
\(572\) 2.91936 0.122065
\(573\) −11.2451 −0.469772
\(574\) 13.0233 0.543583
\(575\) 0 0
\(576\) −9.99559 −0.416483
\(577\) 10.5364 0.438637 0.219319 0.975653i \(-0.429617\pi\)
0.219319 + 0.975653i \(0.429617\pi\)
\(578\) 2.06644 0.0859524
\(579\) −3.10072 −0.128862
\(580\) 0 0
\(581\) 5.45968 0.226506
\(582\) 4.27457 0.177187
\(583\) 65.8163 2.72583
\(584\) 8.33992 0.345109
\(585\) 0 0
\(586\) 57.2928 2.36675
\(587\) −43.8752 −1.81092 −0.905461 0.424430i \(-0.860475\pi\)
−0.905461 + 0.424430i \(0.860475\pi\)
\(588\) 2.27016 0.0936198
\(589\) 48.8010 2.01081
\(590\) 0 0
\(591\) −6.51957 −0.268179
\(592\) 19.1045 0.785190
\(593\) −45.3175 −1.86097 −0.930483 0.366336i \(-0.880612\pi\)
−0.930483 + 0.366336i \(0.880612\pi\)
\(594\) −11.1650 −0.458106
\(595\) 0 0
\(596\) −4.76047 −0.194996
\(597\) −7.64104 −0.312727
\(598\) 3.14118 0.128452
\(599\) −7.25368 −0.296377 −0.148189 0.988959i \(-0.547344\pi\)
−0.148189 + 0.988959i \(0.547344\pi\)
\(600\) 0 0
\(601\) −4.18458 −0.170693 −0.0853463 0.996351i \(-0.527200\pi\)
−0.0853463 + 0.996351i \(0.527200\pi\)
\(602\) 22.4471 0.914876
\(603\) −5.45968 −0.222335
\(604\) 19.5339 0.794821
\(605\) 0 0
\(606\) 19.4881 0.791649
\(607\) 34.6812 1.40767 0.703834 0.710365i \(-0.251470\pi\)
0.703834 + 0.710365i \(0.251470\pi\)
\(608\) −64.0662 −2.59823
\(609\) −4.13287 −0.167472
\(610\) 0 0
\(611\) 1.47122 0.0595192
\(612\) 2.27016 0.0917658
\(613\) −1.98352 −0.0801136 −0.0400568 0.999197i \(-0.512754\pi\)
−0.0400568 + 0.999197i \(0.512754\pi\)
\(614\) −6.80929 −0.274800
\(615\) 0 0
\(616\) 3.01634 0.121532
\(617\) 11.1808 0.450123 0.225062 0.974345i \(-0.427742\pi\)
0.225062 + 0.974345i \(0.427742\pi\)
\(618\) 17.4983 0.703884
\(619\) −40.8425 −1.64160 −0.820799 0.571217i \(-0.806472\pi\)
−0.820799 + 0.571217i \(0.806472\pi\)
\(620\) 0 0
\(621\) −6.38669 −0.256289
\(622\) 14.8476 0.595333
\(623\) 6.47602 0.259456
\(624\) 0.806065 0.0322684
\(625\) 0 0
\(626\) 62.7571 2.50828
\(627\) −42.6562 −1.70352
\(628\) −29.7581 −1.18748
\(629\) −5.64104 −0.224923
\(630\) 0 0
\(631\) 11.8702 0.472546 0.236273 0.971687i \(-0.424074\pi\)
0.236273 + 0.971687i \(0.424074\pi\)
\(632\) −9.42939 −0.375081
\(633\) −2.29466 −0.0912045
\(634\) 34.8704 1.38488
\(635\) 0 0
\(636\) −27.6536 −1.09654
\(637\) −0.238009 −0.00943027
\(638\) −46.1436 −1.82684
\(639\) 9.72543 0.384732
\(640\) 0 0
\(641\) −37.2440 −1.47105 −0.735524 0.677499i \(-0.763064\pi\)
−0.735524 + 0.677499i \(0.763064\pi\)
\(642\) −31.9623 −1.26145
\(643\) −44.7254 −1.76380 −0.881900 0.471437i \(-0.843735\pi\)
−0.881900 + 0.471437i \(0.843735\pi\)
\(644\) 14.4988 0.571333
\(645\) 0 0
\(646\) 16.3142 0.641875
\(647\) 4.67641 0.183849 0.0919244 0.995766i \(-0.470698\pi\)
0.0919244 + 0.995766i \(0.470698\pi\)
\(648\) 0.558268 0.0219308
\(649\) 22.4155 0.879885
\(650\) 0 0
\(651\) −6.18136 −0.242267
\(652\) 5.76693 0.225850
\(653\) 35.0511 1.37165 0.685827 0.727765i \(-0.259441\pi\)
0.685827 + 0.727765i \(0.259441\pi\)
\(654\) 2.84196 0.111129
\(655\) 0 0
\(656\) 21.3440 0.833343
\(657\) 14.9389 0.582823
\(658\) 12.7734 0.497959
\(659\) −50.0635 −1.95020 −0.975099 0.221771i \(-0.928816\pi\)
−0.975099 + 0.221771i \(0.928816\pi\)
\(660\) 0 0
\(661\) −12.4221 −0.483163 −0.241582 0.970381i \(-0.577666\pi\)
−0.241582 + 0.970381i \(0.577666\pi\)
\(662\) 62.3577 2.42360
\(663\) −0.238009 −0.00924352
\(664\) −3.04796 −0.118284
\(665\) 0 0
\(666\) −11.6569 −0.451694
\(667\) −26.3954 −1.02203
\(668\) −32.9258 −1.27394
\(669\) 17.2729 0.667808
\(670\) 0 0
\(671\) 13.8109 0.533162
\(672\) 8.11492 0.313040
\(673\) −24.4270 −0.941593 −0.470796 0.882242i \(-0.656033\pi\)
−0.470796 + 0.882242i \(0.656033\pi\)
\(674\) −0.989268 −0.0381052
\(675\) 0 0
\(676\) −29.3835 −1.13013
\(677\) 0.375154 0.0144183 0.00720917 0.999974i \(-0.497705\pi\)
0.00720917 + 0.999974i \(0.497705\pi\)
\(678\) −21.9384 −0.842540
\(679\) −2.06857 −0.0793845
\(680\) 0 0
\(681\) −12.7783 −0.489667
\(682\) −69.0150 −2.64272
\(683\) −5.26589 −0.201494 −0.100747 0.994912i \(-0.532123\pi\)
−0.100747 + 0.994912i \(0.532123\pi\)
\(684\) 17.9226 0.685288
\(685\) 0 0
\(686\) −2.06644 −0.0788969
\(687\) 18.8704 0.719949
\(688\) 36.7887 1.40256
\(689\) 2.89928 0.110454
\(690\) 0 0
\(691\) −39.3491 −1.49691 −0.748455 0.663185i \(-0.769204\pi\)
−0.748455 + 0.663185i \(0.769204\pi\)
\(692\) 21.7581 0.827119
\(693\) 5.40303 0.205244
\(694\) 12.0316 0.456714
\(695\) 0 0
\(696\) 2.30725 0.0874560
\(697\) −6.30231 −0.238717
\(698\) −0.860996 −0.0325892
\(699\) 9.09151 0.343873
\(700\) 0 0
\(701\) 3.68526 0.139190 0.0695951 0.997575i \(-0.477829\pi\)
0.0695951 + 0.997575i \(0.477829\pi\)
\(702\) −0.491831 −0.0185630
\(703\) −44.5353 −1.67968
\(704\) 54.0065 2.03545
\(705\) 0 0
\(706\) −2.84196 −0.106959
\(707\) −9.43077 −0.354681
\(708\) −9.41818 −0.353957
\(709\) 15.9673 0.599665 0.299833 0.953992i \(-0.403069\pi\)
0.299833 + 0.953992i \(0.403069\pi\)
\(710\) 0 0
\(711\) −16.8904 −0.633441
\(712\) −3.61535 −0.135491
\(713\) −39.4785 −1.47848
\(714\) −2.06644 −0.0773344
\(715\) 0 0
\(716\) −23.6065 −0.882217
\(717\) 16.8219 0.628225
\(718\) −11.1819 −0.417304
\(719\) −24.2206 −0.903277 −0.451639 0.892201i \(-0.649160\pi\)
−0.451639 + 0.892201i \(0.649160\pi\)
\(720\) 0 0
\(721\) −8.46786 −0.315360
\(722\) 89.5364 3.33220
\(723\) −8.10125 −0.301289
\(724\) −42.9944 −1.59787
\(725\) 0 0
\(726\) 37.5942 1.39525
\(727\) −31.9869 −1.18633 −0.593164 0.805081i \(-0.702122\pi\)
−0.593164 + 0.805081i \(0.702122\pi\)
\(728\) 0.132873 0.00492460
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −10.8627 −0.401772
\(732\) −5.80283 −0.214479
\(733\) 13.6850 0.505466 0.252733 0.967536i \(-0.418671\pi\)
0.252733 + 0.967536i \(0.418671\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 51.8275 1.91039
\(737\) 29.4988 1.08660
\(738\) −13.0233 −0.479395
\(739\) 5.27443 0.194023 0.0970115 0.995283i \(-0.469072\pi\)
0.0970115 + 0.995283i \(0.469072\pi\)
\(740\) 0 0
\(741\) −1.87905 −0.0690287
\(742\) 25.1720 0.924093
\(743\) 8.67641 0.318307 0.159153 0.987254i \(-0.449124\pi\)
0.159153 + 0.987254i \(0.449124\pi\)
\(744\) 3.45085 0.126514
\(745\) 0 0
\(746\) −34.7287 −1.27151
\(747\) −5.45968 −0.199759
\(748\) −12.2657 −0.448480
\(749\) 15.4673 0.565164
\(750\) 0 0
\(751\) 3.27832 0.119628 0.0598138 0.998210i \(-0.480949\pi\)
0.0598138 + 0.998210i \(0.480949\pi\)
\(752\) 20.9344 0.763398
\(753\) −2.68900 −0.0979928
\(754\) −2.03268 −0.0740257
\(755\) 0 0
\(756\) −2.27016 −0.0825649
\(757\) −0.273398 −0.00993681 −0.00496841 0.999988i \(-0.501581\pi\)
−0.00496841 + 0.999988i \(0.501581\pi\)
\(758\) −28.8626 −1.04834
\(759\) 34.5075 1.25254
\(760\) 0 0
\(761\) 13.5795 0.492255 0.246127 0.969237i \(-0.420842\pi\)
0.246127 + 0.969237i \(0.420842\pi\)
\(762\) 4.93195 0.178666
\(763\) −1.37530 −0.0497891
\(764\) −25.5283 −0.923580
\(765\) 0 0
\(766\) 40.8527 1.47607
\(767\) 0.987426 0.0356539
\(768\) 10.8464 0.391385
\(769\) 19.6072 0.707053 0.353527 0.935424i \(-0.384982\pi\)
0.353527 + 0.935424i \(0.384982\pi\)
\(770\) 0 0
\(771\) 20.5441 0.739877
\(772\) −7.03914 −0.253344
\(773\) 27.4634 0.987791 0.493896 0.869521i \(-0.335572\pi\)
0.493896 + 0.869521i \(0.335572\pi\)
\(774\) −22.4471 −0.806845
\(775\) 0 0
\(776\) 1.15482 0.0414555
\(777\) 5.64104 0.202371
\(778\) 40.9617 1.46855
\(779\) −49.7559 −1.78269
\(780\) 0 0
\(781\) −52.5468 −1.88027
\(782\) −13.1977 −0.471949
\(783\) 4.13287 0.147697
\(784\) −3.38669 −0.120953
\(785\) 0 0
\(786\) −27.0201 −0.963775
\(787\) 32.5754 1.16119 0.580594 0.814193i \(-0.302820\pi\)
0.580594 + 0.814193i \(0.302820\pi\)
\(788\) −14.8005 −0.527245
\(789\) −11.4554 −0.407823
\(790\) 0 0
\(791\) 10.6165 0.377481
\(792\) −3.01634 −0.107181
\(793\) 0.608383 0.0216043
\(794\) −70.7571 −2.51107
\(795\) 0 0
\(796\) −17.3464 −0.614826
\(797\) 12.4032 0.439343 0.219671 0.975574i \(-0.429501\pi\)
0.219671 + 0.975574i \(0.429501\pi\)
\(798\) −16.3142 −0.577518
\(799\) −6.18136 −0.218681
\(800\) 0 0
\(801\) −6.47602 −0.228819
\(802\) 6.12484 0.216276
\(803\) −80.7156 −2.84839
\(804\) −12.3943 −0.437115
\(805\) 0 0
\(806\) −3.04019 −0.107086
\(807\) −23.5201 −0.827946
\(808\) 5.26489 0.185218
\(809\) −45.1807 −1.58847 −0.794235 0.607611i \(-0.792128\pi\)
−0.794235 + 0.607611i \(0.792128\pi\)
\(810\) 0 0
\(811\) 11.6928 0.410588 0.205294 0.978700i \(-0.434185\pi\)
0.205294 + 0.978700i \(0.434185\pi\)
\(812\) −9.38228 −0.329254
\(813\) 27.4743 0.963566
\(814\) 62.9824 2.20753
\(815\) 0 0
\(816\) −3.38669 −0.118558
\(817\) −85.7596 −3.00035
\(818\) 72.7651 2.54417
\(819\) 0.238009 0.00831672
\(820\) 0 0
\(821\) 39.1317 1.36571 0.682853 0.730556i \(-0.260739\pi\)
0.682853 + 0.730556i \(0.260739\pi\)
\(822\) 12.9063 0.450158
\(823\) −10.8415 −0.377909 −0.188955 0.981986i \(-0.560510\pi\)
−0.188955 + 0.981986i \(0.560510\pi\)
\(824\) 4.72733 0.164684
\(825\) 0 0
\(826\) 8.57299 0.298293
\(827\) −29.8375 −1.03755 −0.518777 0.854910i \(-0.673612\pi\)
−0.518777 + 0.854910i \(0.673612\pi\)
\(828\) −14.4988 −0.503869
\(829\) −37.8452 −1.31442 −0.657209 0.753708i \(-0.728263\pi\)
−0.657209 + 0.753708i \(0.728263\pi\)
\(830\) 0 0
\(831\) −9.01634 −0.312773
\(832\) 2.37904 0.0824785
\(833\) 1.00000 0.0346479
\(834\) 26.0466 0.901922
\(835\) 0 0
\(836\) −96.8364 −3.34916
\(837\) 6.18136 0.213659
\(838\) −26.9445 −0.930784
\(839\) −39.4296 −1.36126 −0.680630 0.732627i \(-0.738294\pi\)
−0.680630 + 0.732627i \(0.738294\pi\)
\(840\) 0 0
\(841\) −11.9194 −0.411012
\(842\) −50.9920 −1.75730
\(843\) 9.78973 0.337176
\(844\) −5.20924 −0.179309
\(845\) 0 0
\(846\) −12.7734 −0.439158
\(847\) −18.1928 −0.625111
\(848\) 41.2546 1.41669
\(849\) 12.1487 0.416942
\(850\) 0 0
\(851\) 36.0276 1.23501
\(852\) 22.0783 0.756389
\(853\) 2.44283 0.0836411 0.0418205 0.999125i \(-0.486684\pi\)
0.0418205 + 0.999125i \(0.486684\pi\)
\(854\) 5.28208 0.180749
\(855\) 0 0
\(856\) −8.63491 −0.295135
\(857\) −32.4018 −1.10683 −0.553413 0.832907i \(-0.686675\pi\)
−0.553413 + 0.832907i \(0.686675\pi\)
\(858\) 2.65738 0.0907214
\(859\) −49.1414 −1.67668 −0.838342 0.545145i \(-0.816475\pi\)
−0.838342 + 0.545145i \(0.816475\pi\)
\(860\) 0 0
\(861\) 6.30231 0.214782
\(862\) 0.549147 0.0187040
\(863\) −12.9842 −0.441987 −0.220994 0.975275i \(-0.570930\pi\)
−0.220994 + 0.975275i \(0.570930\pi\)
\(864\) −8.11492 −0.276075
\(865\) 0 0
\(866\) −33.0549 −1.12325
\(867\) 1.00000 0.0339618
\(868\) −14.0327 −0.476300
\(869\) 91.2596 3.09577
\(870\) 0 0
\(871\) 1.29945 0.0440303
\(872\) 0.767783 0.0260004
\(873\) 2.06857 0.0700106
\(874\) −104.194 −3.52442
\(875\) 0 0
\(876\) 33.9138 1.14584
\(877\) 20.2130 0.682544 0.341272 0.939965i \(-0.389142\pi\)
0.341272 + 0.939965i \(0.389142\pi\)
\(878\) 14.1058 0.476048
\(879\) 27.7254 0.935155
\(880\) 0 0
\(881\) 24.7329 0.833274 0.416637 0.909073i \(-0.363209\pi\)
0.416637 + 0.909073i \(0.363209\pi\)
\(882\) 2.06644 0.0695805
\(883\) −1.87051 −0.0629476 −0.0314738 0.999505i \(-0.510020\pi\)
−0.0314738 + 0.999505i \(0.510020\pi\)
\(884\) −0.540319 −0.0181729
\(885\) 0 0
\(886\) −44.0761 −1.48077
\(887\) 58.4459 1.96242 0.981211 0.192937i \(-0.0618013\pi\)
0.981211 + 0.192937i \(0.0618013\pi\)
\(888\) −3.14921 −0.105681
\(889\) −2.38669 −0.0800472
\(890\) 0 0
\(891\) −5.40303 −0.181008
\(892\) 39.2122 1.31292
\(893\) −48.8010 −1.63306
\(894\) −4.33327 −0.144926
\(895\) 0 0
\(896\) 4.42539 0.147842
\(897\) 1.52009 0.0507544
\(898\) 9.28986 0.310007
\(899\) 25.5468 0.852033
\(900\) 0 0
\(901\) −12.1814 −0.405820
\(902\) 70.3654 2.34291
\(903\) 10.8627 0.361488
\(904\) −5.92687 −0.197125
\(905\) 0 0
\(906\) 17.7809 0.590731
\(907\) 7.38684 0.245276 0.122638 0.992451i \(-0.460865\pi\)
0.122638 + 0.992451i \(0.460865\pi\)
\(908\) −29.0088 −0.962692
\(909\) 9.43077 0.312799
\(910\) 0 0
\(911\) −57.4106 −1.90210 −0.951048 0.309042i \(-0.899992\pi\)
−0.951048 + 0.309042i \(0.899992\pi\)
\(912\) −26.7375 −0.885367
\(913\) 29.4988 0.976269
\(914\) −9.69974 −0.320839
\(915\) 0 0
\(916\) 42.8387 1.41543
\(917\) 13.0757 0.431798
\(918\) 2.06644 0.0682026
\(919\) −39.6776 −1.30884 −0.654422 0.756130i \(-0.727088\pi\)
−0.654422 + 0.756130i \(0.727088\pi\)
\(920\) 0 0
\(921\) −3.29518 −0.108580
\(922\) 26.7702 0.881629
\(923\) −2.31474 −0.0761907
\(924\) 12.2657 0.403513
\(925\) 0 0
\(926\) 47.0619 1.54655
\(927\) 8.46786 0.278121
\(928\) −33.5380 −1.10094
\(929\) 5.89942 0.193554 0.0967768 0.995306i \(-0.469147\pi\)
0.0967768 + 0.995306i \(0.469147\pi\)
\(930\) 0 0
\(931\) 7.89486 0.258744
\(932\) 20.6392 0.676059
\(933\) 7.18511 0.235230
\(934\) 83.5870 2.73505
\(935\) 0 0
\(936\) −0.132873 −0.00434309
\(937\) 32.4825 1.06116 0.530578 0.847636i \(-0.321975\pi\)
0.530578 + 0.847636i \(0.321975\pi\)
\(938\) 11.2821 0.368373
\(939\) 30.3697 0.991078
\(940\) 0 0
\(941\) −11.2746 −0.367541 −0.183771 0.982969i \(-0.558830\pi\)
−0.183771 + 0.982969i \(0.558830\pi\)
\(942\) −27.0876 −0.882562
\(943\) 40.2509 1.31075
\(944\) 14.0503 0.457299
\(945\) 0 0
\(946\) 121.282 3.94323
\(947\) −17.6199 −0.572570 −0.286285 0.958145i \(-0.592420\pi\)
−0.286285 + 0.958145i \(0.592420\pi\)
\(948\) −38.3440 −1.24536
\(949\) −3.55561 −0.115420
\(950\) 0 0
\(951\) 16.8746 0.547198
\(952\) −0.558268 −0.0180936
\(953\) 20.5026 0.664144 0.332072 0.943254i \(-0.392252\pi\)
0.332072 + 0.943254i \(0.392252\pi\)
\(954\) −25.1720 −0.814974
\(955\) 0 0
\(956\) 38.1883 1.23510
\(957\) −22.3300 −0.721828
\(958\) 15.1235 0.488619
\(959\) −6.24566 −0.201683
\(960\) 0 0
\(961\) 7.20922 0.232556
\(962\) 2.77444 0.0894515
\(963\) −15.4673 −0.498428
\(964\) −18.3911 −0.592338
\(965\) 0 0
\(966\) 13.1977 0.424629
\(967\) 36.0543 1.15943 0.579714 0.814820i \(-0.303164\pi\)
0.579714 + 0.814820i \(0.303164\pi\)
\(968\) 10.1564 0.326440
\(969\) 7.89486 0.253620
\(970\) 0 0
\(971\) −1.13069 −0.0362854 −0.0181427 0.999835i \(-0.505775\pi\)
−0.0181427 + 0.999835i \(0.505775\pi\)
\(972\) 2.27016 0.0728154
\(973\) −12.6046 −0.404086
\(974\) −51.7418 −1.65791
\(975\) 0 0
\(976\) 8.65684 0.277099
\(977\) −11.3062 −0.361718 −0.180859 0.983509i \(-0.557888\pi\)
−0.180859 + 0.983509i \(0.557888\pi\)
\(978\) 5.24941 0.167858
\(979\) 34.9901 1.11829
\(980\) 0 0
\(981\) 1.37530 0.0439098
\(982\) 73.3810 2.34168
\(983\) 25.7140 0.820151 0.410075 0.912052i \(-0.365502\pi\)
0.410075 + 0.912052i \(0.365502\pi\)
\(984\) −3.51838 −0.112162
\(985\) 0 0
\(986\) 8.54032 0.271979
\(987\) 6.18136 0.196755
\(988\) −4.26575 −0.135711
\(989\) 69.3768 2.20605
\(990\) 0 0
\(991\) 10.4356 0.331497 0.165748 0.986168i \(-0.446996\pi\)
0.165748 + 0.986168i \(0.446996\pi\)
\(992\) −50.1613 −1.59262
\(993\) 30.1764 0.957620
\(994\) −20.0970 −0.637437
\(995\) 0 0
\(996\) −12.3943 −0.392730
\(997\) −28.6480 −0.907293 −0.453646 0.891182i \(-0.649877\pi\)
−0.453646 + 0.891182i \(0.649877\pi\)
\(998\) 43.6526 1.38180
\(999\) −5.64104 −0.178475
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8925.2.a.bs.1.4 4
5.4 even 2 357.2.a.h.1.1 4
15.14 odd 2 1071.2.a.j.1.4 4
20.19 odd 2 5712.2.a.bx.1.3 4
35.34 odd 2 2499.2.a.z.1.1 4
85.84 even 2 6069.2.a.s.1.1 4
105.104 even 2 7497.2.a.be.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.a.h.1.1 4 5.4 even 2
1071.2.a.j.1.4 4 15.14 odd 2
2499.2.a.z.1.1 4 35.34 odd 2
5712.2.a.bx.1.3 4 20.19 odd 2
6069.2.a.s.1.1 4 85.84 even 2
7497.2.a.be.1.4 4 105.104 even 2
8925.2.a.bs.1.4 4 1.1 even 1 trivial