L(s) = 1 | + 0.901i·2-s + (0.707 + 0.707i)3-s + 1.18·4-s + (−0.446 − 0.446i)5-s + (−0.637 + 0.637i)6-s + (0.707 − 0.707i)7-s + 2.87i·8-s + 1.00i·9-s + (0.402 − 0.402i)10-s + (−0.261 + 0.261i)11-s + (0.839 + 0.839i)12-s + 4.13·13-s + (0.637 + 0.637i)14-s − 0.631i·15-s − 0.217·16-s + (−3.84 + 1.47i)17-s + ⋯ |
L(s) = 1 | + 0.637i·2-s + (0.408 + 0.408i)3-s + 0.593·4-s + (−0.199 − 0.199i)5-s + (−0.260 + 0.260i)6-s + (0.267 − 0.267i)7-s + 1.01i·8-s + 0.333i·9-s + (0.127 − 0.127i)10-s + (−0.0787 + 0.0787i)11-s + (0.242 + 0.242i)12-s + 1.14·13-s + (0.170 + 0.170i)14-s − 0.162i·15-s − 0.0544·16-s + (−0.933 + 0.358i)17-s + ⋯ |
Λ(s)=(=(357s/2ΓC(s)L(s)(0.292−0.956i)Λ(2−s)
Λ(s)=(=(357s/2ΓC(s+1/2)L(s)(0.292−0.956i)Λ(1−s)
Degree: |
2 |
Conductor: |
357
= 3⋅7⋅17
|
Sign: |
0.292−0.956i
|
Analytic conductor: |
2.85065 |
Root analytic conductor: |
1.68838 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ357(64,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 357, ( :1/2), 0.292−0.956i)
|
Particular Values
L(1) |
≈ |
1.44384+1.06847i |
L(21) |
≈ |
1.44384+1.06847i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.707−0.707i)T |
| 7 | 1+(−0.707+0.707i)T |
| 17 | 1+(3.84−1.47i)T |
good | 2 | 1−0.901iT−2T2 |
| 5 | 1+(0.446+0.446i)T+5iT2 |
| 11 | 1+(0.261−0.261i)T−11iT2 |
| 13 | 1−4.13T+13T2 |
| 19 | 1−5.75iT−19T2 |
| 23 | 1+(−4.55+4.55i)T−23iT2 |
| 29 | 1+(0.469+0.469i)T+29iT2 |
| 31 | 1+(6.86+6.86i)T+31iT2 |
| 37 | 1+(−0.683−0.683i)T+37iT2 |
| 41 | 1+(4.61−4.61i)T−41iT2 |
| 43 | 1−4.21iT−43T2 |
| 47 | 1+8.03T+47T2 |
| 53 | 1+7.76iT−53T2 |
| 59 | 1+8.34iT−59T2 |
| 61 | 1+(−8.97+8.97i)T−61iT2 |
| 67 | 1−3.38T+67T2 |
| 71 | 1+(−6.55−6.55i)T+71iT2 |
| 73 | 1+(9.51+9.51i)T+73iT2 |
| 79 | 1+(−3.19+3.19i)T−79iT2 |
| 83 | 1+0.439iT−83T2 |
| 89 | 1−2.28T+89T2 |
| 97 | 1+(3.02+3.02i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.32619668405970750129569386411, −10.88993840462518503592383815540, −9.776369754124909374525486438337, −8.391349495049556032312260015563, −8.156278913124935943352536583086, −6.83484628214683100497859821355, −5.99181742071967765521849810797, −4.72436575078842120063985150208, −3.54582019092450176361340903814, −1.96712149158375338958647191287,
1.45142440448376912661360516778, 2.76176766532891929614882129565, 3.72665515405278484084301949742, 5.38151449312909546794528360519, 6.78302271983695354509791336191, 7.27240585077369719164685386588, 8.670139326874904726971320411764, 9.311667182281476638821361677432, 10.80440885292246356644903138532, 11.16505870162185863004745988655