L(s) = 1 | + 0.901i·2-s + (0.707 + 0.707i)3-s + 1.18·4-s + (−0.446 − 0.446i)5-s + (−0.637 + 0.637i)6-s + (0.707 − 0.707i)7-s + 2.87i·8-s + 1.00i·9-s + (0.402 − 0.402i)10-s + (−0.261 + 0.261i)11-s + (0.839 + 0.839i)12-s + 4.13·13-s + (0.637 + 0.637i)14-s − 0.631i·15-s − 0.217·16-s + (−3.84 + 1.47i)17-s + ⋯ |
L(s) = 1 | + 0.637i·2-s + (0.408 + 0.408i)3-s + 0.593·4-s + (−0.199 − 0.199i)5-s + (−0.260 + 0.260i)6-s + (0.267 − 0.267i)7-s + 1.01i·8-s + 0.333i·9-s + (0.127 − 0.127i)10-s + (−0.0787 + 0.0787i)11-s + (0.242 + 0.242i)12-s + 1.14·13-s + (0.170 + 0.170i)14-s − 0.162i·15-s − 0.0544·16-s + (−0.933 + 0.358i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 357 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.292 - 0.956i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 357 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.292 - 0.956i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.44384 + 1.06847i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.44384 + 1.06847i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 7 | \( 1 + (-0.707 + 0.707i)T \) |
| 17 | \( 1 + (3.84 - 1.47i)T \) |
good | 2 | \( 1 - 0.901iT - 2T^{2} \) |
| 5 | \( 1 + (0.446 + 0.446i)T + 5iT^{2} \) |
| 11 | \( 1 + (0.261 - 0.261i)T - 11iT^{2} \) |
| 13 | \( 1 - 4.13T + 13T^{2} \) |
| 19 | \( 1 - 5.75iT - 19T^{2} \) |
| 23 | \( 1 + (-4.55 + 4.55i)T - 23iT^{2} \) |
| 29 | \( 1 + (0.469 + 0.469i)T + 29iT^{2} \) |
| 31 | \( 1 + (6.86 + 6.86i)T + 31iT^{2} \) |
| 37 | \( 1 + (-0.683 - 0.683i)T + 37iT^{2} \) |
| 41 | \( 1 + (4.61 - 4.61i)T - 41iT^{2} \) |
| 43 | \( 1 - 4.21iT - 43T^{2} \) |
| 47 | \( 1 + 8.03T + 47T^{2} \) |
| 53 | \( 1 + 7.76iT - 53T^{2} \) |
| 59 | \( 1 + 8.34iT - 59T^{2} \) |
| 61 | \( 1 + (-8.97 + 8.97i)T - 61iT^{2} \) |
| 67 | \( 1 - 3.38T + 67T^{2} \) |
| 71 | \( 1 + (-6.55 - 6.55i)T + 71iT^{2} \) |
| 73 | \( 1 + (9.51 + 9.51i)T + 73iT^{2} \) |
| 79 | \( 1 + (-3.19 + 3.19i)T - 79iT^{2} \) |
| 83 | \( 1 + 0.439iT - 83T^{2} \) |
| 89 | \( 1 - 2.28T + 89T^{2} \) |
| 97 | \( 1 + (3.02 + 3.02i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.32619668405970750129569386411, −10.88993840462518503592383815540, −9.776369754124909374525486438337, −8.391349495049556032312260015563, −8.156278913124935943352536583086, −6.83484628214683100497859821355, −5.99181742071967765521849810797, −4.72436575078842120063985150208, −3.54582019092450176361340903814, −1.96712149158375338958647191287,
1.45142440448376912661360516778, 2.76176766532891929614882129565, 3.72665515405278484084301949742, 5.38151449312909546794528360519, 6.78302271983695354509791336191, 7.27240585077369719164685386588, 8.670139326874904726971320411764, 9.311667182281476638821361677432, 10.80440885292246356644903138532, 11.16505870162185863004745988655