Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [357,2,Mod(64,357)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(357, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("357.64");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 357.k (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
64.1 |
|
− | 2.75017i | 0.707107 | + | 0.707107i | −5.56342 | 2.93829 | + | 2.93829i | 1.94466 | − | 1.94466i | 0.707107 | − | 0.707107i | 9.79999i | 1.00000i | 8.08080 | − | 8.08080i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
64.2 | − | 2.65813i | −0.707107 | − | 0.707107i | −5.06565 | 0.521373 | + | 0.521373i | −1.87958 | + | 1.87958i | −0.707107 | + | 0.707107i | 8.14889i | 1.00000i | 1.38588 | − | 1.38588i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
64.3 | − | 1.71520i | −0.707107 | − | 0.707107i | −0.941909 | 2.50881 | + | 2.50881i | −1.21283 | + | 1.21283i | −0.707107 | + | 0.707107i | − | 1.81484i | 1.00000i | 4.30311 | − | 4.30311i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
64.4 | − | 1.51109i | −0.707107 | − | 0.707107i | −0.283389 | −1.65084 | − | 1.65084i | −1.06850 | + | 1.06850i | −0.707107 | + | 0.707107i | − | 2.59395i | 1.00000i | −2.49457 | + | 2.49457i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
64.5 | − | 1.23743i | 0.707107 | + | 0.707107i | 0.468767 | −1.28416 | − | 1.28416i | 0.874995 | − | 0.874995i | 0.707107 | − | 0.707107i | − | 3.05493i | 1.00000i | −1.58906 | + | 1.58906i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
64.6 | 0.0320370i | 0.707107 | + | 0.707107i | 1.99897 | 1.76367 | + | 1.76367i | −0.0226536 | + | 0.0226536i | 0.707107 | − | 0.707107i | 0.128115i | 1.00000i | −0.0565026 | + | 0.0565026i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
64.7 | 0.661473i | −0.707107 | − | 0.707107i | 1.56245 | −1.66372 | − | 1.66372i | 0.467732 | − | 0.467732i | −0.707107 | + | 0.707107i | 2.35647i | 1.00000i | 1.10050 | − | 1.10050i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
64.8 | 0.901740i | 0.707107 | + | 0.707107i | 1.18686 | −0.446227 | − | 0.446227i | −0.637627 | + | 0.637627i | 0.707107 | − | 0.707107i | 2.87372i | 1.00000i | 0.402381 | − | 0.402381i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
64.9 | 1.80873i | −0.707107 | − | 0.707107i | −1.27151 | 0.163056 | + | 0.163056i | 1.27897 | − | 1.27897i | −0.707107 | + | 0.707107i | 1.31765i | 1.00000i | −0.294925 | + | 0.294925i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
64.10 | 2.46803i | 0.707107 | + | 0.707107i | −4.09119 | 1.14975 | + | 1.14975i | −1.74516 | + | 1.74516i | 0.707107 | − | 0.707107i | − | 5.16112i | 1.00000i | −2.83762 | + | 2.83762i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.1 | − | 2.46803i | 0.707107 | − | 0.707107i | −4.09119 | 1.14975 | − | 1.14975i | −1.74516 | − | 1.74516i | 0.707107 | + | 0.707107i | 5.16112i | − | 1.00000i | −2.83762 | − | 2.83762i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.2 | − | 1.80873i | −0.707107 | + | 0.707107i | −1.27151 | 0.163056 | − | 0.163056i | 1.27897 | + | 1.27897i | −0.707107 | − | 0.707107i | − | 1.31765i | − | 1.00000i | −0.294925 | − | 0.294925i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.3 | − | 0.901740i | 0.707107 | − | 0.707107i | 1.18686 | −0.446227 | + | 0.446227i | −0.637627 | − | 0.637627i | 0.707107 | + | 0.707107i | − | 2.87372i | − | 1.00000i | 0.402381 | + | 0.402381i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.4 | − | 0.661473i | −0.707107 | + | 0.707107i | 1.56245 | −1.66372 | + | 1.66372i | 0.467732 | + | 0.467732i | −0.707107 | − | 0.707107i | − | 2.35647i | − | 1.00000i | 1.10050 | + | 1.10050i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.5 | − | 0.0320370i | 0.707107 | − | 0.707107i | 1.99897 | 1.76367 | − | 1.76367i | −0.0226536 | − | 0.0226536i | 0.707107 | + | 0.707107i | − | 0.128115i | − | 1.00000i | −0.0565026 | − | 0.0565026i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.6 | 1.23743i | 0.707107 | − | 0.707107i | 0.468767 | −1.28416 | + | 1.28416i | 0.874995 | + | 0.874995i | 0.707107 | + | 0.707107i | 3.05493i | − | 1.00000i | −1.58906 | − | 1.58906i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.7 | 1.51109i | −0.707107 | + | 0.707107i | −0.283389 | −1.65084 | + | 1.65084i | −1.06850 | − | 1.06850i | −0.707107 | − | 0.707107i | 2.59395i | − | 1.00000i | −2.49457 | − | 2.49457i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.8 | 1.71520i | −0.707107 | + | 0.707107i | −0.941909 | 2.50881 | − | 2.50881i | −1.21283 | − | 1.21283i | −0.707107 | − | 0.707107i | 1.81484i | − | 1.00000i | 4.30311 | + | 4.30311i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.9 | 2.65813i | −0.707107 | + | 0.707107i | −5.06565 | 0.521373 | − | 0.521373i | −1.87958 | − | 1.87958i | −0.707107 | − | 0.707107i | − | 8.14889i | − | 1.00000i | 1.38588 | + | 1.38588i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.10 | 2.75017i | 0.707107 | − | 0.707107i | −5.56342 | 2.93829 | − | 2.93829i | 1.94466 | + | 1.94466i | 0.707107 | + | 0.707107i | − | 9.79999i | − | 1.00000i | 8.08080 | + | 8.08080i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.c | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 357.2.k.b | ✓ | 20 |
3.b | odd | 2 | 1 | 1071.2.n.b | 20 | ||
17.c | even | 4 | 1 | inner | 357.2.k.b | ✓ | 20 |
17.d | even | 8 | 1 | 6069.2.a.bd | 10 | ||
17.d | even | 8 | 1 | 6069.2.a.be | 10 | ||
51.f | odd | 4 | 1 | 1071.2.n.b | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
357.2.k.b | ✓ | 20 | 1.a | even | 1 | 1 | trivial |
357.2.k.b | ✓ | 20 | 17.c | even | 4 | 1 | inner |
1071.2.n.b | 20 | 3.b | odd | 2 | 1 | ||
1071.2.n.b | 20 | 51.f | odd | 4 | 1 | ||
6069.2.a.bd | 10 | 17.d | even | 8 | 1 | ||
6069.2.a.be | 10 | 17.d | even | 8 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .