Properties

Label 357.2.k.b
Level 357357
Weight 22
Character orbit 357.k
Analytic conductor 2.8512.851
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [357,2,Mod(64,357)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(357, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("357.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 357=3717 357 = 3 \cdot 7 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 357.k (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.850659352162.85065935216
Analytic rank: 00
Dimension: 2020
Relative dimension: 1010 over Q(i)\Q(i)
Coefficient field: Q[x]/(x20+)\mathbb{Q}[x]/(x^{20} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x20+32x18+426x16+3072x14+13121x12+34148x10+53608x8+48276x6++4 x^{20} + 32 x^{18} + 426 x^{16} + 3072 x^{14} + 13121 x^{12} + 34148 x^{10} + 53608 x^{8} + 48276 x^{6} + \cdots + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β191,\beta_1,\ldots,\beta_{19} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+β9q3+(β8β71)q4+(β12+β9)q5β3q6β10q7+(β18+β17+2β1)q8++(β18β16++β2)q99+O(q100) q + \beta_1 q^{2} + \beta_{9} q^{3} + (\beta_{8} - \beta_{7} - 1) q^{4} + ( - \beta_{12} + \beta_{9}) q^{5} - \beta_{3} q^{6} - \beta_{10} q^{7} + (\beta_{18} + \beta_{17} + \cdots - 2 \beta_1) q^{8}+ \cdots + ( - \beta_{18} - \beta_{16} + \cdots + \beta_{2}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q24q4+8q54q6+16q10+4q1112q13+4q14+40q16+4q17+8q1852q20+20q2124q224q23+4q248q29+8q314q33++4q99+O(q100) 20 q - 24 q^{4} + 8 q^{5} - 4 q^{6} + 16 q^{10} + 4 q^{11} - 12 q^{13} + 4 q^{14} + 40 q^{16} + 4 q^{17} + 8 q^{18} - 52 q^{20} + 20 q^{21} - 24 q^{22} - 4 q^{23} + 4 q^{24} - 8 q^{29} + 8 q^{31} - 4 q^{33}+ \cdots + 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x20+32x18+426x16+3072x14+13121x12+34148x10+53608x8+48276x6++4 x^{20} + 32 x^{18} + 426 x^{16} + 3072 x^{14} + 13121 x^{12} + 34148 x^{10} + 53608 x^{8} + 48276 x^{6} + \cdots + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (17ν19406ν1885ν1713920ν1611305ν15197026ν14+7424)/173536 ( 17 \nu^{19} - 406 \nu^{18} - 85 \nu^{17} - 13920 \nu^{16} - 11305 \nu^{15} - 197026 \nu^{14} + \cdots - 7424 ) / 173536 Copy content Toggle raw display
β3\beta_{3}== (17ν19+406ν1885ν17+13920ν1611305ν15+197026ν14++7424)/173536 ( 17 \nu^{19} + 406 \nu^{18} - 85 \nu^{17} + 13920 \nu^{16} - 11305 \nu^{15} + 197026 \nu^{14} + \cdots + 7424 ) / 173536 Copy content Toggle raw display
β4\beta_{4}== (657ν19+93ν1822873ν17+811ν16335075ν1521013ν14++183892)/173536 ( - 657 \nu^{19} + 93 \nu^{18} - 22873 \nu^{17} + 811 \nu^{16} - 335075 \nu^{15} - 21013 \nu^{14} + \cdots + 183892 ) / 173536 Copy content Toggle raw display
β5\beta_{5}== (657ν19+93ν18+22873ν17+811ν16+335075ν1521013ν14++183892)/173536 ( 657 \nu^{19} + 93 \nu^{18} + 22873 \nu^{17} + 811 \nu^{16} + 335075 \nu^{15} - 21013 \nu^{14} + \cdots + 183892 ) / 173536 Copy content Toggle raw display
β6\beta_{6}== (195ν19+5724ν17+68424ν15+434332ν13+1631879ν11++2034172ν)/43384 ( 195 \nu^{19} + 5724 \nu^{17} + 68424 \nu^{15} + 434332 \nu^{13} + 1631879 \nu^{11} + \cdots + 2034172 \nu ) / 43384 Copy content Toggle raw display
β7\beta_{7}== (69ν182033ν1624295ν14151965ν12537850ν101090814ν8+368)/7888 ( - 69 \nu^{18} - 2033 \nu^{16} - 24295 \nu^{14} - 151965 \nu^{12} - 537850 \nu^{10} - 1090814 \nu^{8} + \cdots - 368 ) / 7888 Copy content Toggle raw display
β8\beta_{8}== (69ν182033ν1624295ν14151965ν12537850ν101090814ν8++23296)/7888 ( - 69 \nu^{18} - 2033 \nu^{16} - 24295 \nu^{14} - 151965 \nu^{12} - 537850 \nu^{10} - 1090814 \nu^{8} + \cdots + 23296 ) / 7888 Copy content Toggle raw display
β9\beta_{9}== (1856ν1917ν18+58986ν17+85ν16+776736ν15+11305ν14++125460)/173536 ( 1856 \nu^{19} - 17 \nu^{18} + 58986 \nu^{17} + 85 \nu^{16} + 776736 \nu^{15} + 11305 \nu^{14} + \cdots + 125460 ) / 173536 Copy content Toggle raw display
β10\beta_{10}== (1856ν19+17ν18+58986ν1785ν16+776736ν1511305ν14+125460)/173536 ( 1856 \nu^{19} + 17 \nu^{18} + 58986 \nu^{17} - 85 \nu^{16} + 776736 \nu^{15} - 11305 \nu^{14} + \cdots - 125460 ) / 173536 Copy content Toggle raw display
β11\beta_{11}== (92ν192875ν1737159ν15258329ν131055167ν11+247648ν)/7888 ( - 92 \nu^{19} - 2875 \nu^{17} - 37159 \nu^{15} - 258329 \nu^{13} - 1055167 \nu^{11} + \cdots - 247648 \nu ) / 7888 Copy content Toggle raw display
β12\beta_{12}== (2100ν19+1443ν1864146ν17+41273ν16807790ν15+183588)/173536 ( - 2100 \nu^{19} + 1443 \nu^{18} - 64146 \nu^{17} + 41273 \nu^{16} - 807790 \nu^{15} + \cdots - 183588 ) / 173536 Copy content Toggle raw display
β13\beta_{13}== (1401ν1940207ν17459813ν152656383ν138010836ν11++4062736ν)/86768 ( - 1401 \nu^{19} - 40207 \nu^{17} - 459813 \nu^{15} - 2656383 \nu^{13} - 8010836 \nu^{11} + \cdots + 4062736 \nu ) / 86768 Copy content Toggle raw display
β14\beta_{14}== (2100ν191443ν1864146ν1741273ν16807790ν15++183588)/173536 ( - 2100 \nu^{19} - 1443 \nu^{18} - 64146 \nu^{17} - 41273 \nu^{16} - 807790 \nu^{15} + \cdots + 183588 ) / 173536 Copy content Toggle raw display
β15\beta_{15}== (887ν1825870ν16303983ν141847226ν126214991ν10+65534)/43384 ( - 887 \nu^{18} - 25870 \nu^{16} - 303983 \nu^{14} - 1847226 \nu^{12} - 6214991 \nu^{10} + \cdots - 65534 ) / 43384 Copy content Toggle raw display
β16\beta_{16}== (207ν196592ν1787182ν15623022ν132627651ν11+734688ν)/7888 ( - 207 \nu^{19} - 6592 \nu^{17} - 87182 \nu^{15} - 623022 \nu^{13} - 2627651 \nu^{11} + \cdots - 734688 \nu ) / 7888 Copy content Toggle raw display
β17\beta_{17}== (5179ν19172ν18+162953ν174882ν16+2121877ν1558518ν14+369024)/173536 ( 5179 \nu^{19} - 172 \nu^{18} + 162953 \nu^{17} - 4882 \nu^{16} + 2121877 \nu^{15} - 58518 \nu^{14} + \cdots - 369024 ) / 173536 Copy content Toggle raw display
β18\beta_{18}== (5179ν19+172ν18+162953ν17+4882ν16+2121877ν15+58518ν14++369024)/173536 ( 5179 \nu^{19} + 172 \nu^{18} + 162953 \nu^{17} + 4882 \nu^{16} + 2121877 \nu^{15} + 58518 \nu^{14} + \cdots + 369024 ) / 173536 Copy content Toggle raw display
β19\beta_{19}== (3257ν18+99193ν16+1236549ν14+8160989ν12+30879656ν10+118040)/86768 ( 3257 \nu^{18} + 99193 \nu^{16} + 1236549 \nu^{14} + 8160989 \nu^{12} + 30879656 \nu^{10} + \cdots - 118040 ) / 86768 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β8β73 \beta_{8} - \beta_{7} - 3 Copy content Toggle raw display
ν3\nu^{3}== β18+β17+β16+β13β11β10β9β5+β46β1 \beta_{18} + \beta_{17} + \beta_{16} + \beta_{13} - \beta_{11} - \beta_{10} - \beta_{9} - \beta_{5} + \beta_{4} - 6\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β19+β18β172β15β10+β98β8++16 - \beta_{19} + \beta_{18} - \beta_{17} - 2 \beta_{15} - \beta_{10} + \beta_{9} - 8 \beta_{8} + \cdots + 16 Copy content Toggle raw display
ν5\nu^{5}== 9β189β1711β169β13+11β11+8β10++40β1 - 9 \beta_{18} - 9 \beta_{17} - 11 \beta_{16} - 9 \beta_{13} + 11 \beta_{11} + 8 \beta_{10} + \cdots + 40 \beta_1 Copy content Toggle raw display
ν6\nu^{6}== 9β1910β18+10β17+20β15+β14β12+10β10+100 9 \beta_{19} - 10 \beta_{18} + 10 \beta_{17} + 20 \beta_{15} + \beta_{14} - \beta_{12} + 10 \beta_{10} + \cdots - 100 Copy content Toggle raw display
ν7\nu^{7}== 66β18+66β17+93β16+69β13101β1153β10+278β1 66 \beta_{18} + 66 \beta_{17} + 93 \beta_{16} + 69 \beta_{13} - 101 \beta_{11} - 53 \beta_{10} + \cdots - 278 \beta_1 Copy content Toggle raw display
ν8\nu^{8}== 63β19+80β1880β17162β159β14+9β12++666 - 63 \beta_{19} + 80 \beta_{18} - 80 \beta_{17} - 162 \beta_{15} - 9 \beta_{14} + 9 \beta_{12} + \cdots + 666 Copy content Toggle raw display
ν9\nu^{9}== 456β18456β17725β16+4β14509β13+4β12++1970β1 - 456 \beta_{18} - 456 \beta_{17} - 725 \beta_{16} + 4 \beta_{14} - 509 \beta_{13} + 4 \beta_{12} + \cdots + 1970 \beta_1 Copy content Toggle raw display
ν10\nu^{10}== 403β19598β18+598β17+1236β15+51β1451β12+4570 403 \beta_{19} - 598 \beta_{18} + 598 \beta_{17} + 1236 \beta_{15} + 51 \beta_{14} - 51 \beta_{12} + \cdots - 4570 Copy content Toggle raw display
ν11\nu^{11}== 3082β18+3082β17+5475β1680β14+3715β13+14108β1 3082 \beta_{18} + 3082 \beta_{17} + 5475 \beta_{16} - 80 \beta_{14} + 3715 \beta_{13} + \cdots - 14108 \beta_1 Copy content Toggle raw display
ν12\nu^{12}== 2449β19+4340β184340β179230β15171β14+171β12++31876 - 2449 \beta_{19} + 4340 \beta_{18} - 4340 \beta_{17} - 9230 \beta_{15} - 171 \beta_{14} + 171 \beta_{12} + \cdots + 31876 Copy content Toggle raw display
ν13\nu^{13}== 20638β1820638β1740749β16+1044β1427053β13++101698β1 - 20638 \beta_{18} - 20638 \beta_{17} - 40749 \beta_{16} + 1044 \beta_{14} - 27053 \beta_{13} + \cdots + 101698 \beta_1 Copy content Toggle raw display
ν14\nu^{14}== 14223β1930956β18+30956β17+68352β15507β14+224670 14223 \beta_{19} - 30956 \beta_{18} + 30956 \beta_{17} + 68352 \beta_{15} - 507 \beta_{14} + \cdots - 224670 Copy content Toggle raw display
ν15\nu^{15}== 137544β18+137544β17+300979β1611344β14+197103β13+736476β1 137544 \beta_{18} + 137544 \beta_{17} + 300979 \beta_{16} - 11344 \beta_{14} + 197103 \beta_{13} + \cdots - 736476 \beta_1 Copy content Toggle raw display
ν16\nu^{16}== 77985β19+217960β18217960β17504522β15+17281β14++1595596 - 77985 \beta_{19} + 217960 \beta_{18} - 217960 \beta_{17} - 504522 \beta_{15} + 17281 \beta_{14} + \cdots + 1595596 Copy content Toggle raw display
ν17\nu^{17}== 913598β18913598β172213061β16+111644β141438101β13++5352442β1 - 913598 \beta_{18} - 913598 \beta_{17} - 2213061 \beta_{16} + 111644 \beta_{14} - 1438101 \beta_{13} + \cdots + 5352442 \beta_1 Copy content Toggle raw display
ν18\nu^{18}== 389095β191517444β18+1517444β17+3719764β15226891β14+11400710 389095 \beta_{19} - 1517444 \beta_{18} + 1517444 \beta_{17} + 3719764 \beta_{15} - 226891 \beta_{14} + \cdots - 11400710 Copy content Toggle raw display
ν19\nu^{19}== 6048032β18+6048032β17+16224911β161034152β14+39014696β1 6048032 \beta_{18} + 6048032 \beta_{17} + 16224911 \beta_{16} - 1034152 \beta_{14} + \cdots - 39014696 \beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/357Z)×\left(\mathbb{Z}/357\mathbb{Z}\right)^\times.

nn 5252 190190 239239
χ(n)\chi(n) 11 β11-\beta_{11} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
64.1
2.75017i
2.65813i
1.71520i
1.51109i
1.23743i
0.0320370i
0.661473i
0.901740i
1.80873i
2.46803i
2.46803i
1.80873i
0.901740i
0.661473i
0.0320370i
1.23743i
1.51109i
1.71520i
2.65813i
2.75017i
2.75017i 0.707107 + 0.707107i −5.56342 2.93829 + 2.93829i 1.94466 1.94466i 0.707107 0.707107i 9.79999i 1.00000i 8.08080 8.08080i
64.2 2.65813i −0.707107 0.707107i −5.06565 0.521373 + 0.521373i −1.87958 + 1.87958i −0.707107 + 0.707107i 8.14889i 1.00000i 1.38588 1.38588i
64.3 1.71520i −0.707107 0.707107i −0.941909 2.50881 + 2.50881i −1.21283 + 1.21283i −0.707107 + 0.707107i 1.81484i 1.00000i 4.30311 4.30311i
64.4 1.51109i −0.707107 0.707107i −0.283389 −1.65084 1.65084i −1.06850 + 1.06850i −0.707107 + 0.707107i 2.59395i 1.00000i −2.49457 + 2.49457i
64.5 1.23743i 0.707107 + 0.707107i 0.468767 −1.28416 1.28416i 0.874995 0.874995i 0.707107 0.707107i 3.05493i 1.00000i −1.58906 + 1.58906i
64.6 0.0320370i 0.707107 + 0.707107i 1.99897 1.76367 + 1.76367i −0.0226536 + 0.0226536i 0.707107 0.707107i 0.128115i 1.00000i −0.0565026 + 0.0565026i
64.7 0.661473i −0.707107 0.707107i 1.56245 −1.66372 1.66372i 0.467732 0.467732i −0.707107 + 0.707107i 2.35647i 1.00000i 1.10050 1.10050i
64.8 0.901740i 0.707107 + 0.707107i 1.18686 −0.446227 0.446227i −0.637627 + 0.637627i 0.707107 0.707107i 2.87372i 1.00000i 0.402381 0.402381i
64.9 1.80873i −0.707107 0.707107i −1.27151 0.163056 + 0.163056i 1.27897 1.27897i −0.707107 + 0.707107i 1.31765i 1.00000i −0.294925 + 0.294925i
64.10 2.46803i 0.707107 + 0.707107i −4.09119 1.14975 + 1.14975i −1.74516 + 1.74516i 0.707107 0.707107i 5.16112i 1.00000i −2.83762 + 2.83762i
106.1 2.46803i 0.707107 0.707107i −4.09119 1.14975 1.14975i −1.74516 1.74516i 0.707107 + 0.707107i 5.16112i 1.00000i −2.83762 2.83762i
106.2 1.80873i −0.707107 + 0.707107i −1.27151 0.163056 0.163056i 1.27897 + 1.27897i −0.707107 0.707107i 1.31765i 1.00000i −0.294925 0.294925i
106.3 0.901740i 0.707107 0.707107i 1.18686 −0.446227 + 0.446227i −0.637627 0.637627i 0.707107 + 0.707107i 2.87372i 1.00000i 0.402381 + 0.402381i
106.4 0.661473i −0.707107 + 0.707107i 1.56245 −1.66372 + 1.66372i 0.467732 + 0.467732i −0.707107 0.707107i 2.35647i 1.00000i 1.10050 + 1.10050i
106.5 0.0320370i 0.707107 0.707107i 1.99897 1.76367 1.76367i −0.0226536 0.0226536i 0.707107 + 0.707107i 0.128115i 1.00000i −0.0565026 0.0565026i
106.6 1.23743i 0.707107 0.707107i 0.468767 −1.28416 + 1.28416i 0.874995 + 0.874995i 0.707107 + 0.707107i 3.05493i 1.00000i −1.58906 1.58906i
106.7 1.51109i −0.707107 + 0.707107i −0.283389 −1.65084 + 1.65084i −1.06850 1.06850i −0.707107 0.707107i 2.59395i 1.00000i −2.49457 2.49457i
106.8 1.71520i −0.707107 + 0.707107i −0.941909 2.50881 2.50881i −1.21283 1.21283i −0.707107 0.707107i 1.81484i 1.00000i 4.30311 + 4.30311i
106.9 2.65813i −0.707107 + 0.707107i −5.06565 0.521373 0.521373i −1.87958 1.87958i −0.707107 0.707107i 8.14889i 1.00000i 1.38588 + 1.38588i
106.10 2.75017i 0.707107 0.707107i −5.56342 2.93829 2.93829i 1.94466 + 1.94466i 0.707107 + 0.707107i 9.79999i 1.00000i 8.08080 + 8.08080i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 64.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.c even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 357.2.k.b 20
3.b odd 2 1 1071.2.n.b 20
17.c even 4 1 inner 357.2.k.b 20
17.d even 8 1 6069.2.a.bd 10
17.d even 8 1 6069.2.a.be 10
51.f odd 4 1 1071.2.n.b 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
357.2.k.b 20 1.a even 1 1 trivial
357.2.k.b 20 17.c even 4 1 inner
1071.2.n.b 20 3.b odd 2 1
1071.2.n.b 20 51.f odd 4 1
6069.2.a.bd 10 17.d even 8 1
6069.2.a.be 10 17.d even 8 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T220+32T218+426T216+3072T214+13121T212+34148T210++4 T_{2}^{20} + 32 T_{2}^{18} + 426 T_{2}^{16} + 3072 T_{2}^{14} + 13121 T_{2}^{12} + 34148 T_{2}^{10} + \cdots + 4 acting on S2new(357,[χ])S_{2}^{\mathrm{new}}(357, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T20+32T18++4 T^{20} + 32 T^{18} + \cdots + 4 Copy content Toggle raw display
33 (T4+1)5 (T^{4} + 1)^{5} Copy content Toggle raw display
55 T208T19++4096 T^{20} - 8 T^{19} + \cdots + 4096 Copy content Toggle raw display
77 (T4+1)5 (T^{4} + 1)^{5} Copy content Toggle raw display
1111 T20++101687056 T^{20} + \cdots + 101687056 Copy content Toggle raw display
1313 (T10+6T9+91664)2 (T^{10} + 6 T^{9} + \cdots - 91664)^{2} Copy content Toggle raw display
1717 T20++2015993900449 T^{20} + \cdots + 2015993900449 Copy content Toggle raw display
1919 T20++527712784 T^{20} + \cdots + 527712784 Copy content Toggle raw display
2323 T20+4T19++234256 T^{20} + 4 T^{19} + \cdots + 234256 Copy content Toggle raw display
2929 T20+8T19++32444416 T^{20} + 8 T^{19} + \cdots + 32444416 Copy content Toggle raw display
3131 T208T19++5456896 T^{20} - 8 T^{19} + \cdots + 5456896 Copy content Toggle raw display
3737 T20++180162895936 T^{20} + \cdots + 180162895936 Copy content Toggle raw display
4141 T20++69 ⁣ ⁣64 T^{20} + \cdots + 69\!\cdots\!64 Copy content Toggle raw display
4343 T20+182T18++200704 T^{20} + 182 T^{18} + \cdots + 200704 Copy content Toggle raw display
4747 (T10+16T9+9831296)2 (T^{10} + 16 T^{9} + \cdots - 9831296)^{2} Copy content Toggle raw display
5353 T20++533764670464 T^{20} + \cdots + 533764670464 Copy content Toggle raw display
5959 T20++1849600000000 T^{20} + \cdots + 1849600000000 Copy content Toggle raw display
6161 T20++67 ⁣ ⁣44 T^{20} + \cdots + 67\!\cdots\!44 Copy content Toggle raw display
6767 (T1020T9++4614400)2 (T^{10} - 20 T^{9} + \cdots + 4614400)^{2} Copy content Toggle raw display
7171 T20++10 ⁣ ⁣16 T^{20} + \cdots + 10\!\cdots\!16 Copy content Toggle raw display
7373 T20++18 ⁣ ⁣36 T^{20} + \cdots + 18\!\cdots\!36 Copy content Toggle raw display
7979 T20++114770254495744 T^{20} + \cdots + 114770254495744 Copy content Toggle raw display
8383 T20++39382954541056 T^{20} + \cdots + 39382954541056 Copy content Toggle raw display
8989 (T10+32T9+4681216)2 (T^{10} + 32 T^{9} + \cdots - 4681216)^{2} Copy content Toggle raw display
9797 T20++96348160000 T^{20} + \cdots + 96348160000 Copy content Toggle raw display
show more
show less