L(s) = 1 | + 0.792·2-s + 3-s − 1.37·4-s + 3.37·5-s + 0.792·6-s + 2.52·7-s − 2.67·8-s + 9-s + 2.67·10-s − 1.37·12-s − 5.84·13-s + 2·14-s + 3.37·15-s + 0.627·16-s + 2.67·17-s + 0.792·18-s − 0.939·19-s − 4.62·20-s + 2.52·21-s + 2·23-s − 2.67·24-s + 6.37·25-s − 4.62·26-s + 27-s − 3.46·28-s − 0.792·29-s + 2.67·30-s + ⋯ |
L(s) = 1 | + 0.560·2-s + 0.577·3-s − 0.686·4-s + 1.50·5-s + 0.323·6-s + 0.954·7-s − 0.944·8-s + 0.333·9-s + 0.844·10-s − 0.396·12-s − 1.61·13-s + 0.534·14-s + 0.870·15-s + 0.156·16-s + 0.648·17-s + 0.186·18-s − 0.215·19-s − 1.03·20-s + 0.550·21-s + 0.417·23-s − 0.545·24-s + 1.27·25-s − 0.907·26-s + 0.192·27-s − 0.654·28-s − 0.147·29-s + 0.487·30-s + ⋯ |
Λ(s)=(=(363s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(363s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.253826192 |
L(21) |
≈ |
2.253826192 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 11 | 1 |
good | 2 | 1−0.792T+2T2 |
| 5 | 1−3.37T+5T2 |
| 7 | 1−2.52T+7T2 |
| 13 | 1+5.84T+13T2 |
| 17 | 1−2.67T+17T2 |
| 19 | 1+0.939T+19T2 |
| 23 | 1−2T+23T2 |
| 29 | 1+0.792T+29T2 |
| 31 | 1−1.62T+31T2 |
| 37 | 1−5T+37T2 |
| 41 | 1+10.8T+41T2 |
| 43 | 1+6.63T+43T2 |
| 47 | 1+12.7T+47T2 |
| 53 | 1+4.11T+53T2 |
| 59 | 1+6T+59T2 |
| 61 | 1−5.98T+61T2 |
| 67 | 1+1.11T+67T2 |
| 71 | 1+10.7T+71T2 |
| 73 | 1−9.15T+73T2 |
| 79 | 1−4.10T+79T2 |
| 83 | 1+1.87T+83T2 |
| 89 | 1+0.627T+89T2 |
| 97 | 1−10.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.62050949706971693175784826730, −10.08291896927709444050110178215, −9.734244861019423555355439770966, −8.752974647539106053582913938070, −7.79694174501864191774960110430, −6.44663193842469751787444206692, −5.20396291391023309423150626190, −4.76468449858083751139902884752, −3.08416565161952874084754534841, −1.83411454730264611735408611709,
1.83411454730264611735408611709, 3.08416565161952874084754534841, 4.76468449858083751139902884752, 5.20396291391023309423150626190, 6.44663193842469751787444206692, 7.79694174501864191774960110430, 8.752974647539106053582913938070, 9.734244861019423555355439770966, 10.08291896927709444050110178215, 11.62050949706971693175784826730