Properties

Label 2-363-1.1-c1-0-9
Degree $2$
Conductor $363$
Sign $1$
Analytic cond. $2.89856$
Root an. cond. $1.70251$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.792·2-s + 3-s − 1.37·4-s + 3.37·5-s + 0.792·6-s + 2.52·7-s − 2.67·8-s + 9-s + 2.67·10-s − 1.37·12-s − 5.84·13-s + 2·14-s + 3.37·15-s + 0.627·16-s + 2.67·17-s + 0.792·18-s − 0.939·19-s − 4.62·20-s + 2.52·21-s + 2·23-s − 2.67·24-s + 6.37·25-s − 4.62·26-s + 27-s − 3.46·28-s − 0.792·29-s + 2.67·30-s + ⋯
L(s)  = 1  + 0.560·2-s + 0.577·3-s − 0.686·4-s + 1.50·5-s + 0.323·6-s + 0.954·7-s − 0.944·8-s + 0.333·9-s + 0.844·10-s − 0.396·12-s − 1.61·13-s + 0.534·14-s + 0.870·15-s + 0.156·16-s + 0.648·17-s + 0.186·18-s − 0.215·19-s − 1.03·20-s + 0.550·21-s + 0.417·23-s − 0.545·24-s + 1.27·25-s − 0.907·26-s + 0.192·27-s − 0.654·28-s − 0.147·29-s + 0.487·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(2.89856\)
Root analytic conductor: \(1.70251\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 363,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.253826192\)
\(L(\frac12)\) \(\approx\) \(2.253826192\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
11 \( 1 \)
good2 \( 1 - 0.792T + 2T^{2} \)
5 \( 1 - 3.37T + 5T^{2} \)
7 \( 1 - 2.52T + 7T^{2} \)
13 \( 1 + 5.84T + 13T^{2} \)
17 \( 1 - 2.67T + 17T^{2} \)
19 \( 1 + 0.939T + 19T^{2} \)
23 \( 1 - 2T + 23T^{2} \)
29 \( 1 + 0.792T + 29T^{2} \)
31 \( 1 - 1.62T + 31T^{2} \)
37 \( 1 - 5T + 37T^{2} \)
41 \( 1 + 10.8T + 41T^{2} \)
43 \( 1 + 6.63T + 43T^{2} \)
47 \( 1 + 12.7T + 47T^{2} \)
53 \( 1 + 4.11T + 53T^{2} \)
59 \( 1 + 6T + 59T^{2} \)
61 \( 1 - 5.98T + 61T^{2} \)
67 \( 1 + 1.11T + 67T^{2} \)
71 \( 1 + 10.7T + 71T^{2} \)
73 \( 1 - 9.15T + 73T^{2} \)
79 \( 1 - 4.10T + 79T^{2} \)
83 \( 1 + 1.87T + 83T^{2} \)
89 \( 1 + 0.627T + 89T^{2} \)
97 \( 1 - 10.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.62050949706971693175784826730, −10.08291896927709444050110178215, −9.734244861019423555355439770966, −8.752974647539106053582913938070, −7.79694174501864191774960110430, −6.44663193842469751787444206692, −5.20396291391023309423150626190, −4.76468449858083751139902884752, −3.08416565161952874084754534841, −1.83411454730264611735408611709, 1.83411454730264611735408611709, 3.08416565161952874084754534841, 4.76468449858083751139902884752, 5.20396291391023309423150626190, 6.44663193842469751787444206692, 7.79694174501864191774960110430, 8.752974647539106053582913938070, 9.734244861019423555355439770966, 10.08291896927709444050110178215, 11.62050949706971693175784826730

Graph of the $Z$-function along the critical line