Properties

Label 363.2.a.j
Level 363363
Weight 22
Character orbit 363.a
Self dual yes
Analytic conductor 2.8992.899
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(1,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 363=3112 363 = 3 \cdot 11^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 363.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 2.898569593372.89856959337
Analytic rank: 00
Dimension: 44
Coefficient field: Q(3,11)\Q(\sqrt{3}, \sqrt{11})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x47x2+4 x^{4} - 7x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+q3+(β3+2)q4β3q5+β1q6+(β2+β1)q7+(2β2+β1)q8+q9+(2β2β1)q10+(β3+2)q12++(2β25β1)q98+O(q100) q + \beta_1 q^{2} + q^{3} + (\beta_{3} + 2) q^{4} - \beta_{3} q^{5} + \beta_1 q^{6} + ( - \beta_{2} + \beta_1) q^{7} + (2 \beta_{2} + \beta_1) q^{8} + q^{9} + ( - 2 \beta_{2} - \beta_1) q^{10} + (\beta_{3} + 2) q^{12}+ \cdots + ( - 2 \beta_{2} - 5 \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q3+6q4+2q5+4q9+6q12+8q14+2q15+14q1630q20+8q23+14q2530q26+4q27+18q3126q34+6q36+20q37+20q38+4q97+O(q100) 4 q + 4 q^{3} + 6 q^{4} + 2 q^{5} + 4 q^{9} + 6 q^{12} + 8 q^{14} + 2 q^{15} + 14 q^{16} - 30 q^{20} + 8 q^{23} + 14 q^{25} - 30 q^{26} + 4 q^{27} + 18 q^{31} - 26 q^{34} + 6 q^{36} + 20 q^{37} + 20 q^{38}+ \cdots - 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x47x2+4 x^{4} - 7x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν35ν)/2 ( \nu^{3} - 5\nu ) / 2 Copy content Toggle raw display
β3\beta_{3}== ν24 \nu^{2} - 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+4 \beta_{3} + 4 Copy content Toggle raw display
ν3\nu^{3}== 2β2+5β1 2\beta_{2} + 5\beta_1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.52434
−0.792287
0.792287
2.52434
−2.52434 1.00000 4.37228 −2.37228 −2.52434 −0.792287 −5.98844 1.00000 5.98844
1.2 −0.792287 1.00000 −1.37228 3.37228 −0.792287 −2.52434 2.67181 1.00000 −2.67181
1.3 0.792287 1.00000 −1.37228 3.37228 0.792287 2.52434 −2.67181 1.00000 2.67181
1.4 2.52434 1.00000 4.37228 −2.37228 2.52434 0.792287 5.98844 1.00000 −5.98844
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
1111 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 363.2.a.j 4
3.b odd 2 1 1089.2.a.u 4
4.b odd 2 1 5808.2.a.ck 4
5.b even 2 1 9075.2.a.cv 4
11.b odd 2 1 inner 363.2.a.j 4
11.c even 5 4 363.2.e.n 16
11.d odd 10 4 363.2.e.n 16
33.d even 2 1 1089.2.a.u 4
44.c even 2 1 5808.2.a.ck 4
55.d odd 2 1 9075.2.a.cv 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
363.2.a.j 4 1.a even 1 1 trivial
363.2.a.j 4 11.b odd 2 1 inner
363.2.e.n 16 11.c even 5 4
363.2.e.n 16 11.d odd 10 4
1089.2.a.u 4 3.b odd 2 1
1089.2.a.u 4 33.d even 2 1
5808.2.a.ck 4 4.b odd 2 1
5808.2.a.ck 4 44.c even 2 1
9075.2.a.cv 4 5.b even 2 1
9075.2.a.cv 4 55.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T247T22+4 T_{2}^{4} - 7T_{2}^{2} + 4 acting on S2new(Γ0(363))S_{2}^{\mathrm{new}}(\Gamma_0(363)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T47T2+4 T^{4} - 7T^{2} + 4 Copy content Toggle raw display
33 (T1)4 (T - 1)^{4} Copy content Toggle raw display
55 (T2T8)2 (T^{2} - T - 8)^{2} Copy content Toggle raw display
77 T47T2+4 T^{4} - 7T^{2} + 4 Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 T451T2+576 T^{4} - 51T^{2} + 576 Copy content Toggle raw display
1717 T443T2+256 T^{4} - 43T^{2} + 256 Copy content Toggle raw display
1919 T419T2+16 T^{4} - 19T^{2} + 16 Copy content Toggle raw display
2323 (T2)4 (T - 2)^{4} Copy content Toggle raw display
2929 T47T2+4 T^{4} - 7T^{2} + 4 Copy content Toggle raw display
3131 (T29T+12)2 (T^{2} - 9 T + 12)^{2} Copy content Toggle raw display
3737 (T5)4 (T - 5)^{4} Copy content Toggle raw display
4141 T4151T2+3844 T^{4} - 151T^{2} + 3844 Copy content Toggle raw display
4343 (T244)2 (T^{2} - 44)^{2} Copy content Toggle raw display
4747 (T2+14T+16)2 (T^{2} + 14 T + 16)^{2} Copy content Toggle raw display
5353 (T29T54)2 (T^{2} - 9 T - 54)^{2} Copy content Toggle raw display
5959 (T+6)4 (T + 6)^{4} Copy content Toggle raw display
6161 T443T2+256 T^{4} - 43T^{2} + 256 Copy content Toggle raw display
6767 (T215T18)2 (T^{2} - 15 T - 18)^{2} Copy content Toggle raw display
7171 (T2+10T8)2 (T^{2} + 10 T - 8)^{2} Copy content Toggle raw display
7373 T4139T2+4624 T^{4} - 139T^{2} + 4624 Copy content Toggle raw display
7979 T451T2+576 T^{4} - 51T^{2} + 576 Copy content Toggle raw display
8383 T476T2+256 T^{4} - 76T^{2} + 256 Copy content Toggle raw display
8989 (T2+7T+4)2 (T^{2} + 7 T + 4)^{2} Copy content Toggle raw display
9797 (T2+2T131)2 (T^{2} + 2 T - 131)^{2} Copy content Toggle raw display
show more
show less