Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [363,2,Mod(1,363)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(363, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("363.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 363.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.52434 | 1.00000 | 4.37228 | −2.37228 | −2.52434 | −0.792287 | −5.98844 | 1.00000 | 5.98844 | ||||||||||||||||||||||||||||||
1.2 | −0.792287 | 1.00000 | −1.37228 | 3.37228 | −0.792287 | −2.52434 | 2.67181 | 1.00000 | −2.67181 | |||||||||||||||||||||||||||||||
1.3 | 0.792287 | 1.00000 | −1.37228 | 3.37228 | 0.792287 | 2.52434 | −2.67181 | 1.00000 | 2.67181 | |||||||||||||||||||||||||||||||
1.4 | 2.52434 | 1.00000 | 4.37228 | −2.37228 | 2.52434 | 0.792287 | 5.98844 | 1.00000 | −5.98844 | |||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 363.2.a.j | ✓ | 4 |
3.b | odd | 2 | 1 | 1089.2.a.u | 4 | ||
4.b | odd | 2 | 1 | 5808.2.a.ck | 4 | ||
5.b | even | 2 | 1 | 9075.2.a.cv | 4 | ||
11.b | odd | 2 | 1 | inner | 363.2.a.j | ✓ | 4 |
11.c | even | 5 | 4 | 363.2.e.n | 16 | ||
11.d | odd | 10 | 4 | 363.2.e.n | 16 | ||
33.d | even | 2 | 1 | 1089.2.a.u | 4 | ||
44.c | even | 2 | 1 | 5808.2.a.ck | 4 | ||
55.d | odd | 2 | 1 | 9075.2.a.cv | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
363.2.a.j | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
363.2.a.j | ✓ | 4 | 11.b | odd | 2 | 1 | inner |
363.2.e.n | 16 | 11.c | even | 5 | 4 | ||
363.2.e.n | 16 | 11.d | odd | 10 | 4 | ||
1089.2.a.u | 4 | 3.b | odd | 2 | 1 | ||
1089.2.a.u | 4 | 33.d | even | 2 | 1 | ||
5808.2.a.ck | 4 | 4.b | odd | 2 | 1 | ||
5808.2.a.ck | 4 | 44.c | even | 2 | 1 | ||
9075.2.a.cv | 4 | 5.b | even | 2 | 1 | ||
9075.2.a.cv | 4 | 55.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .