L(s) = 1 | + (−0.5 + 1.32i)2-s + 2.64·3-s + (−1.50 − 1.32i)4-s + (−1.32 + 3.50i)6-s + 2.64·7-s + (2.50 − 1.32i)8-s + 4.00·9-s − 2.64i·11-s + (−3.96 − 3.50i)12-s − i·13-s + (−1.32 + 3.50i)14-s + (0.500 + 3.96i)16-s + (−2.00 + 5.29i)18-s − 5.29·19-s + 7.00·21-s + (3.50 + 1.32i)22-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.935i)2-s + 1.52·3-s + (−0.750 − 0.661i)4-s + (−0.540 + 1.42i)6-s + 0.999·7-s + (0.883 − 0.467i)8-s + 1.33·9-s − 0.797i·11-s + (−1.14 − 1.01i)12-s − 0.277i·13-s + (−0.353 + 0.935i)14-s + (0.125 + 0.992i)16-s + (−0.471 + 1.24i)18-s − 1.21·19-s + 1.52·21-s + (0.746 + 0.282i)22-s + ⋯ |
Λ(s)=(=(364s/2ΓC(s)L(s)(0.661−0.750i)Λ(2−s)
Λ(s)=(=(364s/2ΓC(s+1/2)L(s)(0.661−0.750i)Λ(1−s)
Degree: |
2 |
Conductor: |
364
= 22⋅7⋅13
|
Sign: |
0.661−0.750i
|
Analytic conductor: |
2.90655 |
Root analytic conductor: |
1.70486 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ364(27,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 364, ( :1/2), 0.661−0.750i)
|
Particular Values
L(1) |
≈ |
1.66967+0.753717i |
L(21) |
≈ |
1.66967+0.753717i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−1.32i)T |
| 7 | 1−2.64T |
| 13 | 1+iT |
good | 3 | 1−2.64T+3T2 |
| 5 | 1−5T2 |
| 11 | 1+2.64iT−11T2 |
| 17 | 1−17T2 |
| 19 | 1+5.29T+19T2 |
| 23 | 1−7.93iT−23T2 |
| 29 | 1+2T+29T2 |
| 31 | 1+2.64T+31T2 |
| 37 | 1+T+37T2 |
| 41 | 1−7iT−41T2 |
| 43 | 1+5.29iT−43T2 |
| 47 | 1+7.93T+47T2 |
| 53 | 1−4T+53T2 |
| 59 | 1+10.5T+59T2 |
| 61 | 1−7iT−61T2 |
| 67 | 1+13.2iT−67T2 |
| 71 | 1−15.8iT−71T2 |
| 73 | 1+7iT−73T2 |
| 79 | 1+13.2iT−79T2 |
| 83 | 1+5.29T+83T2 |
| 89 | 1+14iT−89T2 |
| 97 | 1+7iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.30805395046880504813244198053, −10.35334785860889719890597355467, −9.224679860579102861636232742460, −8.612819428244674262057812784745, −7.974833284230237124559641151878, −7.20444887064878828040712720508, −5.82283381509617375380046704361, −4.61402973530226840842132696567, −3.39160677536440472396088069310, −1.69852090821316109022626954131,
1.79748004562692399511237543219, 2.61723776692082725441602347467, 4.00834549831180653712377574379, 4.78296993121953392227327505388, 6.99024399111233468039166660603, 8.039738074984828709027939630971, 8.600504301226130164398589540363, 9.315764092225712011077592039947, 10.36170768744278193085685606103, 11.09276228966929639915028359732