Properties

Label 364.2.f.a
Level $364$
Weight $2$
Character orbit 364.f
Analytic conductor $2.907$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [364,2,Mod(27,364)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(364, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("364.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 364 = 2^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 364.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.90655463357\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 3x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 1) q^{2} + (\beta_{3} - 2 \beta_1) q^{3} + ( - \beta_{2} - 1) q^{4} + ( - 4 \beta_{3} + \beta_1) q^{6} + (\beta_{3} - 2 \beta_1) q^{7} + ( - \beta_{2} + 3) q^{8} + 4 q^{9} + ( - 2 \beta_{2} + 1) q^{11}+ \cdots + ( - 8 \beta_{2} + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 6 q^{4} + 10 q^{8} + 16 q^{9} + 2 q^{16} - 8 q^{18} + 28 q^{21} + 14 q^{22} + 20 q^{25} - 8 q^{29} - 22 q^{32} - 24 q^{36} - 4 q^{37} - 14 q^{42} - 14 q^{44} - 42 q^{46} + 28 q^{49} - 10 q^{50}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 3x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - \nu ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} + \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/364\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(183\) \(197\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
27.1
1.32288 0.500000i
−1.32288 + 0.500000i
1.32288 + 0.500000i
−1.32288 0.500000i
−0.500000 1.32288i −2.64575 −1.50000 + 1.32288i 0 1.32288 + 3.50000i −2.64575 2.50000 + 1.32288i 4.00000 0
27.2 −0.500000 1.32288i 2.64575 −1.50000 + 1.32288i 0 −1.32288 3.50000i 2.64575 2.50000 + 1.32288i 4.00000 0
27.3 −0.500000 + 1.32288i −2.64575 −1.50000 1.32288i 0 1.32288 3.50000i −2.64575 2.50000 1.32288i 4.00000 0
27.4 −0.500000 + 1.32288i 2.64575 −1.50000 1.32288i 0 −1.32288 + 3.50000i 2.64575 2.50000 1.32288i 4.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
7.b odd 2 1 inner
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 364.2.f.a 4
4.b odd 2 1 inner 364.2.f.a 4
7.b odd 2 1 inner 364.2.f.a 4
28.d even 2 1 inner 364.2.f.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
364.2.f.a 4 1.a even 1 1 trivial
364.2.f.a 4 4.b odd 2 1 inner
364.2.f.a 4 7.b odd 2 1 inner
364.2.f.a 4 28.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 7 \) acting on \(S_{2}^{\mathrm{new}}(364, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 2)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 7)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 7)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 7)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} - 28)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 63)^{2} \) Copy content Toggle raw display
$29$ \( (T + 2)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 7)^{2} \) Copy content Toggle raw display
$37$ \( (T + 1)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 28)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 63)^{2} \) Copy content Toggle raw display
$53$ \( (T - 4)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} - 112)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 175)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 252)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 175)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 28)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 196)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
show more
show less