L(s) = 1 | + (−0.766 + 0.642i)2-s + (−0.939 + 0.342i)5-s + (−0.499 − 0.866i)8-s + (0.5 − 0.866i)10-s + (0.939 + 0.342i)16-s + (0.5 − 0.866i)17-s + (0.5 + 0.866i)19-s + (−0.173 + 0.984i)23-s + (0.766 − 0.642i)25-s + (−0.173 + 0.984i)31-s + (0.173 + 0.984i)34-s + (−0.939 − 0.342i)38-s + (0.766 + 0.642i)40-s + (−0.5 − 0.866i)46-s + (0.347 + 1.96i)47-s + ⋯ |
L(s) = 1 | + (−0.766 + 0.642i)2-s + (−0.939 + 0.342i)5-s + (−0.499 − 0.866i)8-s + (0.5 − 0.866i)10-s + (0.939 + 0.342i)16-s + (0.5 − 0.866i)17-s + (0.5 + 0.866i)19-s + (−0.173 + 0.984i)23-s + (0.766 − 0.642i)25-s + (−0.173 + 0.984i)31-s + (0.173 + 0.984i)34-s + (−0.939 − 0.342i)38-s + (0.766 + 0.642i)40-s + (−0.5 − 0.866i)46-s + (0.347 + 1.96i)47-s + ⋯ |
Λ(s)=(=(3645s/2ΓC(s)L(s)(−0.957−0.286i)Λ(1−s)
Λ(s)=(=(3645s/2ΓC(s)L(s)(−0.957−0.286i)Λ(1−s)
Degree: |
2 |
Conductor: |
3645
= 36⋅5
|
Sign: |
−0.957−0.286i
|
Analytic conductor: |
1.81909 |
Root analytic conductor: |
1.34873 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3645(404,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3645, ( :0), −0.957−0.286i)
|
Particular Values
L(21) |
≈ |
0.4525934657 |
L(21) |
≈ |
0.4525934657 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(0.939−0.342i)T |
good | 2 | 1+(0.766−0.642i)T+(0.173−0.984i)T2 |
| 7 | 1+(0.939−0.342i)T2 |
| 11 | 1+(−0.766−0.642i)T2 |
| 13 | 1+(−0.173−0.984i)T2 |
| 17 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 19 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 23 | 1+(0.173−0.984i)T+(−0.939−0.342i)T2 |
| 29 | 1+(−0.173+0.984i)T2 |
| 31 | 1+(0.173−0.984i)T+(−0.939−0.342i)T2 |
| 37 | 1+(0.5+0.866i)T2 |
| 41 | 1+(−0.173−0.984i)T2 |
| 43 | 1+(−0.766−0.642i)T2 |
| 47 | 1+(−0.347−1.96i)T+(−0.939+0.342i)T2 |
| 53 | 1+T+T2 |
| 59 | 1+(−0.766+0.642i)T2 |
| 61 | 1+(0.173+0.984i)T+(−0.939+0.342i)T2 |
| 67 | 1+(−0.173−0.984i)T2 |
| 71 | 1+(0.5+0.866i)T2 |
| 73 | 1+(0.5−0.866i)T2 |
| 79 | 1+(0.766−0.642i)T+(0.173−0.984i)T2 |
| 83 | 1+(0.766−0.642i)T+(0.173−0.984i)T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1+(−0.766−0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.978845207606328541271787010768, −7.929964727361603878114096638102, −7.83633548712610345262543273185, −7.07243496524060882261879856842, −6.38145692455421572384444005106, −5.44873230197759633240136283813, −4.43340708462142710077882539718, −3.48699743339343711447598302716, −2.98791396666301419606232888925, −1.23515980323002493233666220642,
0.39039799677121155815876909475, 1.54330409116017070381441533477, 2.64299498112681813761917726903, 3.57099887046083271141538820372, 4.50076985377928656162454540485, 5.29465085499758873120679671052, 6.14451129927002733064659367475, 7.12881904652342990543213036543, 7.924267155224486419945892409552, 8.520796087162132686261864995829