L(s) = 1 | + (−0.766 + 0.642i)2-s + (−0.939 + 0.342i)5-s + (−0.499 − 0.866i)8-s + (0.5 − 0.866i)10-s + (0.939 + 0.342i)16-s + (0.5 − 0.866i)17-s + (0.5 + 0.866i)19-s + (−0.173 + 0.984i)23-s + (0.766 − 0.642i)25-s + (−0.173 + 0.984i)31-s + (0.173 + 0.984i)34-s + (−0.939 − 0.342i)38-s + (0.766 + 0.642i)40-s + (−0.5 − 0.866i)46-s + (0.347 + 1.96i)47-s + ⋯ |
L(s) = 1 | + (−0.766 + 0.642i)2-s + (−0.939 + 0.342i)5-s + (−0.499 − 0.866i)8-s + (0.5 − 0.866i)10-s + (0.939 + 0.342i)16-s + (0.5 − 0.866i)17-s + (0.5 + 0.866i)19-s + (−0.173 + 0.984i)23-s + (0.766 − 0.642i)25-s + (−0.173 + 0.984i)31-s + (0.173 + 0.984i)34-s + (−0.939 − 0.342i)38-s + (0.766 + 0.642i)40-s + (−0.5 − 0.866i)46-s + (0.347 + 1.96i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.957 - 0.286i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.957 - 0.286i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4525934657\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4525934657\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.939 - 0.342i)T \) |
good | 2 | \( 1 + (0.766 - 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 7 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 11 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 13 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.173 - 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 31 | \( 1 + (0.173 - 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 43 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 47 | \( 1 + (-0.347 - 1.96i)T + (-0.939 + 0.342i)T^{2} \) |
| 53 | \( 1 + T + T^{2} \) |
| 59 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 61 | \( 1 + (0.173 + 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.766 - 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 83 | \( 1 + (0.766 - 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.978845207606328541271787010768, −7.929964727361603878114096638102, −7.83633548712610345262543273185, −7.07243496524060882261879856842, −6.38145692455421572384444005106, −5.44873230197759633240136283813, −4.43340708462142710077882539718, −3.48699743339343711447598302716, −2.98791396666301419606232888925, −1.23515980323002493233666220642,
0.39039799677121155815876909475, 1.54330409116017070381441533477, 2.64299498112681813761917726903, 3.57099887046083271141538820372, 4.50076985377928656162454540485, 5.29465085499758873120679671052, 6.14451129927002733064659367475, 7.12881904652342990543213036543, 7.924267155224486419945892409552, 8.520796087162132686261864995829